亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Wireless Sensor Networks (WSNs) have become widely used in various fields like environmental monitoring, smart agriculture, and health care. However, their extensive usage also introduces significant vulnerabilities to cyber viruses. Addressing this security issue in WSNs is very challenging due to their inherent limitations in energy and bandwidth to implement real-time security measures. To tackle the virus issue, it is crucial to first understand how it spreads in WSNs. In this brief, we propose a novel epidemic spreading model for WSNs, integrating the susceptible-infected-susceptible (SIS) epidemic spreading model and node probabilistic sleep scheduling--a critical mechanism for optimizing energy efficiency. Using the microscopic Markov chain (MMC) method, we derive the spreading equations and epidemic threshold of our model. We conduct numerical simulations to validate the theoretical results and investigate the impact of key factors on epidemic spreading in WSNs. Notably, we discover that the epidemic threshold is directly proportional to the ratio of node sleeping and node activation probabilities.

相關內容

In this work, we address parametric non-stationary fluid dynamics problems within a model order reduction setting based on domain decomposition. Starting from the domain decomposition approach, we derive an optimal control problem, for which we present the convergence analysis. The snapshots for the high-fidelity model are obtained with the Finite Element discretisation, and the model order reduction is then proposed both in terms of time and physical parameters, with a standard POD-Galerkin projection. We test the proposed methodology on two fluid dynamics benchmarks: the non-stationary backward-facing step and lid-driven cavity flow. Finally, also in view of future works, we compare the intrusive POD--Galerkin approach with a non--intrusive approach based on Neural Networks.

How do you ensure that, in a reverberant room, several people can speak simultaneously to several other people, making themselves perfectly understood and without any crosstalk between messages? In this work, we report a conceptual solution to this problem by developing an intelligent acoustic wall, which can be reconfigured electronically and is controlled by a learning algorithm that adapts to the geometry of the room and the positions of sources and receivers. To this end, a portion of the room boundaries is covered with a smart mirror made of a broadband acoustic reconfigurable metasurface (ARMs) designed to provide a two-state (0 or {\pi}) phase shift in the reflected waves by 200 independently tunable units. The whole phase pattern is optimized to maximize the Shannon capacity while minimizing crosstalk between the different sources and receivers. We demonstrate the control of multi-spectral sound fields covering a spectrum much larger than the coherence bandwidth of the room for diverse striking functionalities, including crosstalk-free acoustic communication, frequency-multiplexed communications, and multi-user communications. An experiment conducted with two music sources for two different people demonstrates a crosstalk-free simultaneous music playback. Our work opens new routes for the control of sound waves in complex media and for a new generation of acoustic devices.

Navigating automated driving systems (ADSs) through complex driving environments is difficult. Predicting the driving behavior of surrounding human-driven vehicles (HDVs) is a critical component of an ADS. This paper proposes an enhanced motion-planning approach for an ADS in a highway-merging scenario. The proposed enhanced approach utilizes the results of two aspects: the driving behavior and long-term trajectory of surrounding HDVs, which are coupled using a hierarchical model that is used for the motion planning of an ADS to improve driving safety.

Simultaneously identifying contributory variables and controlling the false discovery rate (FDR) in high-dimensional data is an important statistical problem. In this paper, we propose a novel model-free variable selection procedure in sufficient dimension reduction via data splitting technique. The variable selection problem is first connected with a least square procedure with several response transformations. We construct a series of statistics with global symmetry property and then utilize the symmetry to derive a data-driven threshold to achieve error rate control. This method can achieve finite-sample and asymptotic FDR control under some mild conditions. Numerical experiments indicate that our procedure has satisfactory FDR control and higher power compared with existing methods.

Complex systems that consist of different kinds of entities that interact in different ways can be modeled by multilayer networks. This paper uses the tensor formalism with the Einstein tensor product to model this type of networks. Several centrality measures, that are well known for single-layer networks, are extended to multilayer networks using tensors and their properties are investigated. In particular, subgraph centrality based on the exponential and resolvent of a tensor are considered. Krylov subspace methods are introduced for computing approximations of different measures for large multilayer networks.

The elastic energy of a bending-resistant interface depends both on its geometry and its material composition. We consider such a heterogeneous interface in the plane, modeled by a curve equipped with an additional density function. The resulting energy captures the complex interplay between curvature and density effects, resembling the Canham-Helfrich functional. We describe the curve by its inclination angle, so that the equilibrium equations reduce to an elliptic system of second order. After a brief variational discussion, we investigate the associated nonlocal $L^2$-gradient flow evolution, a coupled quasilinear parabolic problem. We analyze the (non)preservation of quantities such as convexity, positivity, and symmetry, as well as the asymptotic behavior of the system. The results are illustrated by numerical experiments.

Network control theory can be used to model how one should steer the brain between different states by driving a specific region with an input. The needed energy to control a network is often used to quantify its controllability, and controlling brain networks requires diverse energy depending on the selected input region. We use the theory of how input node placement affects the longest control chain (LCC) in the controllability of brain networks to study the role of the architecture of white matter fibers in the required control energy. We show that the energy needed to control human brain networks is related to the LCC, i.e., the longest distance between the input region and other regions in the network. We indicate that regions that control brain networks with lower energy have small LCCs. These regions align with areas that can steer the brain around the state space smoothly. By contrast, regions that need higher energy to move the brain toward different target states have larger LCCs. We also investigate the role of the number of paths between regions in the control energy. Our results show that the more paths between regions, the lower cost needed to control brain networks. We evaluate the number of paths by counting specific motifs in brain networks since determining all paths in graphs is a difficult problem.

Velocity limit (VL) has been widely adopted in many variants of particle swarm optimization (PSO) to prevent particles from searching outside the solution space. Several adaptive VL strategies have been introduced with which the performance of PSO can be improved. However, the existing adaptive VL strategies simply adjust their VL based on iterations, leading to unsatisfactory optimization results because of the incompatibility between VL and the current searching state of particles. To deal with this problem, a novel PSO variant with state-based adaptive velocity limit strategy (PSO-SAVL) is proposed. In the proposed PSO-SAVL, VL is adaptively adjusted based on the evolutionary state estimation (ESE) in which a high value of VL is set for global searching state and a low value of VL is set for local searching state. Besides that, limit handling strategies have been modified and adopted to improve the capability of avoiding local optima. The good performance of PSO-SAVL has been experimentally validated on a wide range of benchmark functions with 50 dimensions. The satisfactory scalability of PSO-SAVL in high-dimension and large-scale problems is also verified. Besides, the merits of the strategies in PSO-SAVL are verified in experiments. Sensitivity analysis for the relevant hyper-parameters in state-based adaptive VL strategy is conducted, and insights in how to select these hyper-parameters are also discussed.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司