亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multiparty session types are designed to abstractly capture the structure of communication protocols and verify behavioural properties. One important such property is progress, i.e., the absence of deadlock. Distributed algorithms often resemble multiparty communication protocols. But proving their properties, in particular termination that is closely related to progress, can be elaborate. Since distributed algorithms are often designed to cope with faults, a first step towards using session types to verify distributed algorithms is to integrate fault-tolerance. We extend multiparty session types to cope with system failures such as unreliable communication and process crashes. Moreover, we augment the semantics of processes by failure patterns that can be used to represent system requirements (as, e.g., failure detectors). To illustrate our approach we analyse a variant of the well-known rotating coordinator algorithm by Chandra and Toueg. This technical report presents the proofs and some additional material to extend [30].

相關內容

Processing 是(shi)一(yi)門(men)開源(yuan)編程(cheng)語言和(he)與之配(pei)套的(de)集成開發環境(jing)(IDE)的(de)名稱。Processing 在電子藝術和(he)視覺設計社區(qu)被用(yong)來教授編程(cheng)基礎,并運用(yong)于大量的(de)新媒體和(he)互動藝術作品中。

Flight-related health effects are a growing area of environmental health research with most work examining the concurrent impact of in-flight exposure on cardiac health. One understudied area is on the post-flight effects of in-flight exposures. Studies on the health effects of flight often collect a range of repeatedly sampled, time-varying exposure measurements both under crossover and longitudinal sampling designs. A natural choice to model the relationship of these lagged exposures on post-flight outcomes is the distributed lag model (DLM). However, longitudinal DLMs are a lightly studied class of models. In this article, we propose a class of models for analyzing longitudinal DLMs where the random effects can incorporate more general structures including random lags that arise from repeatedly sampling lagged exposures. We develop variational Bayesian algorithms to estimate model components under differing random effect structures, derive a variational AIC for model selection between these structures, and show how the converged variational estimates can fit into a framework for testing for the difference between two semiparametric curves. We then investigate the post-flight effects of in-flight, lagged exposures on heart health. We also perform simulation studies to evaluate the operating characteristics of our models.

We establish the following two main results on order types of points in general position in the plane (realizable simple planar order types, realizable uniform acyclic oriented matroids of rank $3$): (a) The number of extreme points in an $n$-point order type, chosen uniformly at random from all such order types, is on average $4+o(1)$. For labeled order types, this number has average $4- \frac{8}{n^2 - n +2}$ and variance at most $3$. (b) The (labeled) order types read off a set of $n$ points sampled independently from the uniform measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are concentrated, i.e. such sampling typically encounters only a vanishingly small fraction of all order types of the given size. Result (a) generalizes to arbitrary dimension $d$ for labeled order types with the average number of extreme points $2d+o(1)$ and constant variance. We also discuss to what extent our methods generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods allow to show the following relative of the Erd\H{o}s-Szekeres theorem: for any fixed $k$, as $n \to \infty$, a proportion $1 - O(1/n)$ of the $n$-point simple order types contain a triangle enclosing a convex $k$-chain over an edge. For the unlabeled case in (a), we prove that for any antipodal, finite subset of the $2$-dimensional sphere, the group of orientation preserving bijections is cyclic, dihedral or one of $A_4$, $S_4$ or $A_5$ (and each case is possible). These are the finite subgroups of $SO(3)$ and our proof follows the lines of their characterization by Felix Klein.

In this work, we propose a novel protocol for secure three-party computation with an honest majority. For each AND gate, our protocol requires only two bits of communication in the online phase and two bits of communication in the offline phase. Also, only P2 and P3 are involved in the online phase. Our protocol is simulation-based secure in the presence of semi-honest adversaries, and achieves privacy but not correctness in the presence of malicious adversaries. The best previously known construction in this setting requires three bits of communication per AND gate in the online phase and does not achieve constant communication rounds for P1. This makes our protocol especially interesting for cases where P1 can only communicate to the other parties with high latency. Additionally, our protocol can achieve circuit privacy against P3 if P1 and P2 also send bits for every XOR gate to P3. This property may be interesting to achieve a two-party computation where P3 only acts as an auxiliary party with no input and should not learn the computed function. Our protocol also supports the client-server model and works for both arithmetic and boolean circuits.

Humans are naturally endowed with the ability to write in a particular style. They can, for instance, re-phrase a formal letter in an informal way, convey a literal message with the use of figures of speech or edit a novel mimicking the style of some well-known authors. Automating this form of creativity constitutes the goal of style transfer. As a natural language generation task, style transfer aims at rewriting existing texts, and specifically, it creates paraphrases that exhibit some desired stylistic attributes. From a practical perspective, it envisions beneficial applications, like chat-bots that modulate their communicative style to appear empathetic, or systems that automatically simplify technical articles for a non-expert audience. Several style-aware paraphrasing methods have attempted to tackle style transfer. A handful of surveys give a methodological overview of the field, but they do not support researchers to focus on specific styles. With this paper, we aim at providing a comprehensive discussion of the styles that have received attention in the transfer task. We organize them in a hierarchy, highlighting the challenges for the definition of each of them, and pointing out gaps in the current research landscape. The hierarchy comprises two main groups. One encompasses styles that people modulate arbitrarily, along the lines of registers and genres. The other group corresponds to unintentionally expressed styles, due to an author's personal characteristics. Hence, our review shows how these groups relate to one another, and where specific styles, including some that have not yet been explored, belong in the hierarchy. Moreover, we summarize the methods employed for different stylistic families, hinting researchers towards those that would be the most fitting for future research.

Technical debt refers to taking shortcuts to achieve short-term goals while sacrificing the long-term maintainability and evolvability of software systems. A large part of technical debt is explicitly reported by the developers themselves; this is commonly referred to as Self-Admitted Technical Debt or SATD. Previous work has focused on identifying SATD from source code comments and issue trackers. However, there are no approaches available for automatically identifying SATD from other sources such as commit messages and pull requests, or by combining multiple sources. Therefore, we propose and evaluate an approach for automated SATD identification that integrates four sources: source code comments, commit messages, pull requests, and issue tracking systems. Our findings show that our approach outperforms baseline approaches and achieves an average F1-score of 0.611 when detecting four types of SATD (i.e., code/design debt, requirement debt, documentation debt, and test debt) from the four aforementioned sources. Thereafter, we analyze 23.6M code comments, 1.3M commit messages, 3.7M issue sections, and 1.7M pull request sections to characterize SATD in 103 open-source projects. Furthermore, we investigate the SATD keywords and relations between SATD in different sources. The findings indicate, among others, that: 1) SATD is evenly spread among all sources; 2) issues and pull requests are the two most similar sources regarding the number of shared SATD keywords, followed by commit messages, and then followed by code comments; 3) there are four kinds of relations between SATD items in the different sources.

Multi-scenario learning (MSL) enables a service provider to cater for users' fine-grained demands by separating services for different user sectors, e.g., by user's geographical region. Under each scenario there is a need to optimize multiple task-specific targets e.g., click through rate and conversion rate, known as multi-task learning (MTL). Recent solutions for MSL and MTL are mostly based on the multi-gate mixture-of-experts (MMoE) architecture. MMoE structure is typically static and its design requires domain-specific knowledge, making it less effective in handling both MSL and MTL. In this paper, we propose a novel Automatic Expert Selection framework for Multi-scenario and Multi-task search, named AESM^{2}. AESM^{2} integrates both MSL and MTL into a unified framework with an automatic structure learning. Specifically, AESM^{2} stacks multi-task layers over multi-scenario layers. This hierarchical design enables us to flexibly establish intrinsic connections between different scenarios, and at the same time also supports high-level feature extraction for different tasks. At each multi-scenario/multi-task layer, a novel expert selection algorithm is proposed to automatically identify scenario-/task-specific and shared experts for each input. Experiments over two real-world large-scale datasets demonstrate the effectiveness of AESM^{2} over a battery of strong baselines. Online A/B test also shows substantial performance gain on multiple metrics. Currently, AESM^{2} has been deployed online for serving major traffic.

We consider experiments in dynamical systems where interventions on some experimental units impact other units through a limiting constraint (such as a limited inventory). Despite outsize practical importance, the best estimators for this `Markovian' interference problem are largely heuristic in nature, and their bias is not well understood. We formalize the problem of inference in such experiments as one of policy evaluation. Off-policy estimators, while unbiased, apparently incur a large penalty in variance relative to state-of-the-art heuristics. We introduce an on-policy estimator: the Differences-In-Q's (DQ) estimator. We show that the DQ estimator can in general have exponentially smaller variance than off-policy evaluation. At the same time, its bias is second order in the impact of the intervention. This yields a striking bias-variance tradeoff so that the DQ estimator effectively dominates state-of-the-art alternatives. From a theoretical perspective, we introduce three separate novel techniques that are of independent interest in the theory of Reinforcement Learning (RL). Our empirical evaluation includes a set of experiments on a city-scale ride-hailing simulator.

Collision avoidance for multirobot systems is a well-studied problem. Recently, control barrier functions (CBFs) have been proposed for synthesizing controllers that guarantee collision avoidance and goal stabilization for multiple robots. However, it has been noted that reactive control synthesis methods (such as CBFs) are prone to \textit{deadlock}, an equilibrium of system dynamics that causes the robots to stall before reaching their goals. In this paper, we analyze the closed-loop dynamics of robots using CBFs, to characterize controller parameters, initial conditions, and goal locations that invariably lead the system to deadlock. Using tools from duality theory, we derive geometric properties of robot configurations of an $N$ robot system once it is in deadlock and we justify them using the mechanics interpretation of KKT conditions. Our key deductions are that 1) system deadlock is characterized by a force-equilibrium on robots and 2) deadlock occurs to ensure safety when safety is on the brink of being violated. These deductions allow us to interpret deadlock as a subset of the state space, and we show that this set is non-empty and located on the boundary of the safe set. By exploiting these properties, we analyze the number of admissible robot configurations in deadlock and develop a provably-correct decentralized algorithm for deadlock resolution to safely deliver the robots to their goals. This algorithm is validated in simulations as well as experimentally on Khepera-IV robots.

This paper investigates the network load balancing problem in data centers (DCs) where multiple load balancers (LBs) are deployed, using the multi-agent reinforcement learning (MARL) framework. The challenges of this problem consist of the heterogeneous processing architecture and dynamic environments, as well as limited and partial observability of each LB agent in distributed networking systems, which can largely degrade the performance of in-production load balancing algorithms in real-world setups. Centralised-training-decentralised-execution (CTDE) RL scheme has been proposed to improve MARL performance, yet it incurs -- especially in distributed networking systems, which prefer distributed and plug-and-play design scheme -- additional communication and management overhead among agents. We formulate the multi-agent load balancing problem as a Markov potential game, with a carefully and properly designed workload distribution fairness as the potential function. A fully distributed MARL algorithm is proposed to approximate the Nash equilibrium of the game. Experimental evaluations involve both an event-driven simulator and real-world system, where the proposed MARL load balancing algorithm shows close-to-optimal performance in simulations, and superior results over in-production LBs in the real-world system.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司