Many brain-computer interfaces make use of brain signals that are elicited in response to a visual, auditory or tactile stimulus, so-called event-related potentials (ERPs). In visual ERP speller applications, sets of letters shown on a screen are flashed randomly, and the participant attends to the target letter they want to spell. When this letter flashes, the resulting ERP is different compared to when any other non-target letter flashes. We propose a new unsupervised approach to detect this attended letter. In each trial, for every available letter our approach makes the hypothesis that it is in fact the attended letter, and calculates the ERPs based on each of these hypotheses. We leverage the fact that only the true hypothesis produces the largest difference between the class means. Note that this unsupervised method does not require any changes to the underlying experimental paradigm and therefore can be employed in almost any ERP-based setup. To deal with limited data, we use a block-Toeplitz regularized covariance matrix that models the background activity. We implemented the proposed novel unsupervised mean-difference maximization (UMM) method and evaluated it in offline replays of brain-computer interface visual speller datasets. For a dataset that used 16 flashes per symbol per trial, UMM correctly classifies 3651 out of 3654 letters ($99.92\,\%$) across 25 participants. In another dataset with fewer and shorter trials, 7344 out of 7383 letters ($99.47\,\%$) are classified correctly across 54 participants with two sessions each. Even in more challenging datasets obtained from patients with amyotrophic lateral sclerosis ($77.86\,\%$) or when using auditory ERPs ($82.52\,\%$), the obtained classification rates obtained by UMM are competitive. In addition, UMM provides stable confidence measures which can be used to monitor convergence.
Graph convolutional networks (GCNs) have been shown to be vulnerable to small adversarial perturbations, which becomes a severe threat and largely limits their applications in security-critical scenarios. To mitigate such a threat, considerable research efforts have been devoted to increasing the robustness of GCNs against adversarial attacks. However, current defense approaches are typically designed to prevent GCNs from untargeted adversarial attacks and focus on overall performance, making it challenging to protect important local nodes from more powerful targeted adversarial attacks. Additionally, a trade-off between robustness and performance is often made in existing research. Such limitations highlight the need for developing an effective and efficient approach that can defend local nodes against targeted attacks, without compromising the overall performance of GCNs. In this work, we present a simple yet effective method, named Graph Universal Adversarial Defense (GUARD). Unlike previous works, GUARD protects each individual node from attacks with a universal defensive patch, which is generated once and can be applied to any node (node-agnostic) in a graph. GUARD is fast, straightforward to implement without any change to network architecture nor any additional parameters, and is broadly applicable to any GCNs. Extensive experiments on four benchmark datasets demonstrate that GUARD significantly improves robustness for several established GCNs against multiple adversarial attacks and outperforms state-of-the-art defense methods by large margins.
All analog signal processing is fundamentally subject to noise, and this is also the case in modern implementations of Optical Neural Networks (ONNs). Therefore, to mitigate noise in ONNs, we propose two designs that are constructed from a given, possibly trained, Neural Network (NN) that one wishes to implement. Both designs have the capability that the resulting ONNs gives outputs close to the desired NN. To establish the latter, we analyze the designs mathematically. Specifically, we investigate a probabilistic framework for the first design that establishes that the design is correct, i.e., for any feed-forward NN with Lipschitz continuous activation functions, an ONN can be constructed that produces output arbitrarily close to the original. ONNs constructed with the first design thus also inherit the universal approximation property of NNs. For the second design, we restrict the analysis to NNs with linear activation functions and characterize the ONNs' output distribution using exact formulas. Finally, we report on numerical experiments with LeNet ONNs that give insight into the number of components required in these designs for certain accuracy gains. We specifically study the effect of noise as a function of the depth of an ONN. The results indicate that in practice, adding just a few components in the manner of the first or the second design can already be expected to increase the accuracy of ONNs considerably.
Convolutional neural networks (CNNs) are increasingly being used in critical systems, where robustness and alignment are crucial. In this context, the field of explainable artificial intelligence has proposed the generation of high-level explanations of the prediction process of CNNs through concept extraction. While these methods can detect whether or not a concept is present in an image, they are unable to determine its location. What is more, a fair comparison of such approaches is difficult due to a lack of proper validation procedures. To address these issues, we propose a novel method for automatic concept extraction and localization based on representations obtained through pixel-wise aggregations of CNN activation maps. Further, we introduce a process for the validation of concept-extraction techniques based on synthetic datasets with pixel-wise annotations of their main components, reducing the need for human intervention. Extensive experimentation on both synthetic and real-world datasets demonstrates that our method outperforms state-of-the-art alternatives.
The expansion of the Internet-of-Things (IoT) paradigm is inevitable, but vulnerabilities of IoT devices to malware incidents have become an increasing concern. Recent research has shown that the integration of Reinforcement Learning with Moving Target Defense (MTD) mechanisms can enhance cybersecurity in IoT devices. Nevertheless, the numerous new malware attacks and the time that agents take to learn and select effective MTD techniques make this approach impractical for real-world IoT scenarios. To tackle this issue, this work presents CyberForce, a framework that employs Federated Reinforcement Learning (FRL) to collectively and privately determine suitable MTD techniques for mitigating diverse zero-day attacks. CyberForce integrates device fingerprinting and anomaly detection to reward or penalize MTD mechanisms chosen by an FRL-based agent. The framework has been evaluated in a federation consisting of ten devices of a real IoT platform. A pool of experiments with six malware samples affecting the devices has demonstrated that CyberForce can precisely learn optimum MTD mitigation strategies. When all clients are affected by all attacks, the FRL agent exhibits high accuracy and reduced training time when compared to a centralized RL agent. In cases where different clients experience distinct attacks, the CyberForce clients gain benefits through the transfer of knowledge from other clients and similar attack behavior. Additionally, CyberForce showcases notable robustness against data poisoning attacks.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.