Large language models (LLMs) have been applied in various applications due to their astonishing capabilities. With advancements in technologies such as chain-of-thought (CoT) prompting and in-context learning (ICL), the prompts fed to LLMs are becoming increasingly lengthy, even exceeding tens of thousands of tokens. To accelerate model inference and reduce cost, this paper presents LLMLingua, a coarse-to-fine prompt compression method that involves a budget controller to maintain semantic integrity under high compression ratios, a token-level iterative compression algorithm to better model the interdependence between compressed contents, and an instruction tuning based method for distribution alignment between language models. We conduct experiments and analysis over four datasets from different scenarios, i.e., GSM8K, BBH, ShareGPT, and Arxiv-March23; showing that the proposed approach yields state-of-the-art performance and allows for up to 20x compression with little performance loss. Our code is available at //aka.ms/LLMLingua.
Modern large language models (LLMs), such as ChatGPT, have demonstrated impressive capabilities for coding tasks including writing and reasoning about code. They improve upon previous neural network models of code, such as code2seq or seq2seq, that already demonstrated competitive results when performing tasks such as code summarization and identifying code vulnerabilities. However, these previous code models were shown vulnerable to adversarial examples, i.e. small syntactic perturbations that do not change the program's semantics, such as the inclusion of "dead code" through false conditions or the addition of inconsequential print statements, designed to "fool" the models. LLMs can also be vulnerable to the same adversarial perturbations but a detailed study on this concern has been lacking so far. In this paper we aim to investigate the effect of adversarial perturbations on coding tasks with LLMs. In particular, we study the transferability of adversarial examples, generated through white-box attacks on smaller code models, to LLMs. Furthermore, to make the LLMs more robust against such adversaries without incurring the cost of retraining, we propose prompt-based defenses that involve modifying the prompt to include additional information such as examples of adversarially perturbed code and explicit instructions for reversing adversarial perturbations. Our experiments show that adversarial examples obtained with a smaller code model are indeed transferable, weakening the LLMs' performance. The proposed defenses show promise in improving the model's resilience, paving the way to more robust defensive solutions for LLMs in code-related applications.
The remarkable advancements in large language models (LLMs) have significantly enhanced the performance in few-shot learning settings. By using only a small number of labeled examples, referred to as demonstrations, LLMs can effectively grasp the task at hand through in-context learning. However, the process of selecting appropriate demonstrations has received limited attention in prior work. This paper addresses the issue of identifying the most informative demonstrations for few-shot learning by approaching it as a pool-based Active Learning (AL) problem over a single iteration. Our objective is to investigate how AL algorithms can serve as effective demonstration selection methods for in-context learning. We compare various standard AL algorithms based on uncertainty, diversity, and similarity, and consistently observe that the latter outperforms all other methods, including random sampling. Notably, uncertainty sampling, despite its success in conventional supervised learning scenarios, performs poorly in this context. Our extensive experimentation involving a diverse range of GPT and OPT models across $24$ classification and multi-choice tasks, coupled with thorough analysis, unambiguously demonstrates that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
Large language models (LLMs) have been widely recognized as transformative technology due to their capabilities to understand and generate natural language text, including plans with some limited reasoning capabilities. LLM-based agents derive their autonomy from the capabilities of LLMs, which enable them to autonomously break down the given goal into a set of manageable tasks and orchestrate the task execution to fulfill the goal. Despite the huge efforts put into building LLM-based autonomous agents, the architecture design of the agents has not yet been systematically explored. Also, while there are significant benefits of using autonomous agents for planning and execution, there are serious considerations regarding responsible AI related software quality attributes, such as security and accountability. Therefore, this paper presents a pattern-oriented reference architecture that serves as architecture design guidelines and enables responsible-AI-by-design when designing LLM-based autonomous agents. We evaluate the completeness and utility of the proposed reference architecture by mapping it to the architecture of two real-world agents.
Scoring student-drawn models is time-consuming. Recently released GPT-4V provides a unique opportunity to advance scientific modeling practices by leveraging the powerful image processing capability. To test this ability specifically for automatic scoring, we developed a method NERIF (Notation-Enhanced Rubric Instruction for Few-shot Learning) employing instructional note and rubrics to prompt GPT-4V to score students' drawn models for science phenomena. We randomly selected a set of balanced data (N = 900) that includes student-drawn models for six modeling assessment tasks. Each model received a score from GPT-4V ranging at three levels: 'Beginning,' 'Developing,' or 'Proficient' according to scoring rubrics. GPT-4V scores were compared with human experts' scores to calculate scoring accuracy. Results show that GPT-4V's average scoring accuracy was mean =.51, SD = .037. Specifically, average scoring accuracy was .64 for the 'Beginning' class, .62 for the 'Developing' class, and .26 for the 'Proficient' class, indicating that more proficient models are more challenging to score. Further qualitative study reveals how GPT-4V retrieves information from image input, including problem context, example evaluations provided by human coders, and students' drawing models. We also uncovered how GPT-4V catches the characteristics of student-drawn models and narrates them in natural language. At last, we demonstrated how GPT-4V assigns scores to student-drawn models according to the given scoring rubric and instructional notes. Our findings suggest that the NERIF is an effective approach for employing GPT-4V to score drawn models. Even though there is space for GPT-4V to improve scoring accuracy, some mis-assigned scores seemed interpretable to experts. The results of this study show that utilizing GPT-4V for automatic scoring of student-drawn models is promising.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.