Multimodal foundation models are transformative in sequential recommender systems, leveraging powerful representation learning capabilities. While Parameter-efficient Fine-tuning (PEFT) is commonly used to adapt foundation models for recommendation tasks, most research prioritizes parameter efficiency, often overlooking critical factors like GPU memory efficiency and training speed. Addressing this gap, our paper introduces IISAN (Intra- and Inter-modal Side Adapted Network for Multimodal Representation), a simple plug-and-play architecture using a Decoupled PEFT structure and exploiting both intra- and inter-modal adaptation. IISAN matches the performance of full fine-tuning (FFT) and state-of-the-art PEFT. More importantly, it significantly reduces GPU memory usage - from 47GB to just 3GB for multimodal sequential recommendation tasks. Additionally, it accelerates training time per epoch from 443s to 22s compared to FFT. This is also a notable improvement over the Adapter and LoRA, which require 37-39 GB GPU memory and 350-380 seconds per epoch for training. Furthermore, we propose a new composite efficiency metric, TPME (Training-time, Parameter, and GPU Memory Efficiency) to alleviate the prevalent misconception that "parameter efficiency represents overall efficiency". TPME provides more comprehensive insights into practical efficiency comparisons between different methods. Besides, we give an accessible efficiency analysis of all PEFT and FFT approaches, which demonstrate the superiority of IISAN. We release our codes and other materials at //github.com/jjGenAILab/IISAN.
Traditional recommendation systems are subject to a strong feedback loop by learning from and reinforcing past user-item interactions, which in turn limits the discovery of novel user interests. To address this, we introduce a hybrid hierarchical framework combining Large Language Models (LLMs) and classic recommendation models for user interest exploration. The framework controls the interfacing between the LLMs and the classic recommendation models through "interest clusters", the granularity of which can be explicitly determined by algorithm designers. It recommends the next novel interests by first representing "interest clusters" using language, and employs a fine-tuned LLM to generate novel interest descriptions that are strictly within these predefined clusters. At the low level, it grounds these generated interests to an item-level policy by restricting classic recommendation models, in this case a transformer-based sequence recommender to return items that fall within the novel clusters generated at the high level. We showcase the efficacy of this approach on an industrial-scale commercial platform serving billions of users. Live experiments show a significant increase in both exploration of novel interests and overall user enjoyment of the platform.
Designing reward functions is a longstanding challenge in reinforcement learning (RL); it requires specialized knowledge or domain data, leading to high costs for development. To address this, we introduce Text2Reward, a data-free framework that automates the generation and shaping of dense reward functions based on large language models (LLMs). Given a goal described in natural language, Text2Reward generates shaped dense reward functions as an executable program grounded in a compact representation of the environment. Unlike inverse RL and recent work that uses LLMs to write sparse reward codes or unshaped dense rewards with a constant function across timesteps, Text2Reward produces interpretable, free-form dense reward codes that cover a wide range of tasks, utilize existing packages, and allow iterative refinement with human feedback. We evaluate Text2Reward on two robotic manipulation benchmarks (ManiSkill2, MetaWorld) and two locomotion environments of MuJoCo. On 13 of the 17 manipulation tasks, policies trained with generated reward codes achieve similar or better task success rates and convergence speed than expert-written reward codes. For locomotion tasks, our method learns six novel locomotion behaviors with a success rate exceeding 94%. Furthermore, we show that the policies trained in the simulator with our method can be deployed in the real world. Finally, Text2Reward further improves the policies by refining their reward functions with human feedback. Video results are available at //text-to-reward.github.io/ .
Large language models (LLMs) significantly enhance the performance of various applications, but they are computationally intensive and energy-demanding. This makes it challenging to deploy them on devices with limited resources, such as personal computers and mobile/wearable devices, and results in substantial inference costs in resource-rich environments like cloud servers. To extend the use of LLMs, we introduce a low-rank decomposition approach to effectively compress these models, tailored to the requirements of specific applications. We observe that LLMs pretrained on general datasets contain many redundant components not needed for particular applications. Our method focuses on identifying and removing these redundant parts, retaining only the necessary elements for the target applications. Specifically, we represent the weight matrices of LLMs as a linear combination of base components. We then prune the irrelevant bases and enhance the model with new bases beneficial for specific applications. Deep compression results on the Llama 2-7b and -13B models, conducted on target applications including mathematical reasoning and code generation, show that our method significantly reduces model size while maintaining comparable accuracy to state-of-the-art low-rank compression techniques.
We consider the problem of multi-objective alignment of foundation models with human preferences, which is a critical step towards helpful and harmless AI systems. However, it is generally costly and unstable to fine-tune large foundation models using reinforcement learning (RL), and the multi-dimensionality, heterogeneity, and conflicting nature of human preferences further complicate the alignment process. In this paper, we introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context and applies supervised fine-tuning for alignment. The salient features of RiC are simplicity and adaptivity, as it only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time. Inspired by the analytical solution of an abstracted convex optimization problem, our dynamic inference-time adjustment method approaches the Pareto-optimal solution for multiple objectives. Empirical evidence demonstrates the efficacy of our method in aligning both Large Language Models (LLMs) and diffusion models to accommodate diverse rewards with only around 10% GPU hours compared with multi-objective RL baseline.
Point cloud analysis has seen substantial advancements due to deep learning, although previous Transformer-based methods excel at modeling long-range dependencies on this task, their computational demands are substantial. Conversely, the Mamba offers greater efficiency but shows limited potential compared with Transformer-based methods. In this study, we introduce PoinTramba, a pioneering hybrid framework that synergies the analytical power of Transformer with the remarkable computational efficiency of Mamba for enhanced point cloud analysis. Specifically, our approach first segments point clouds into groups, where the Transformer meticulously captures intricate intra-group dependencies and produces group embeddings, whose inter-group relationships will be simultaneously and adeptly captured by efficient Mamba architecture, ensuring comprehensive analysis. Unlike previous Mamba approaches, we introduce a bi-directional importance-aware ordering (BIO) strategy to tackle the challenges of random ordering effects. This innovative strategy intelligently reorders group embeddings based on their calculated importance scores, significantly enhancing Mamba's performance and optimizing the overall analytical process. Our framework achieves a superior balance between computational efficiency and analytical performance by seamlessly integrating these advanced techniques, marking a substantial leap forward in point cloud analysis. Extensive experiments on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart demonstrate the effectiveness of our approach, establishing a new state-of-the-art analysis benchmark on point cloud recognition. For the first time, this paradigm leverages the combined strengths of both Transformer and Mamba architectures, facilitating a new standard in the field. The code is available at //github.com/xiaoyao3302/PoinTramba.
Modern deep learning models, growing larger and more complex, have demonstrated exceptional generalization and accuracy due to training on huge datasets. This trend is expected to continue. However, the increasing size of these models poses challenges in training, as traditional centralized methods are limited by memory constraints at such scales. This paper proposes an asynchronous decentralized training paradigm for large modern deep learning models that harnesses the compute power of regular heterogeneous PCs with limited resources connected across the internet to achieve favourable performance metrics. Ravnest facilitates decentralized training by efficiently organizing compute nodes into clusters with similar data transfer rates and compute capabilities, without necessitating that each node hosts the entire model. These clusters engage in $\textit{Zero-Bubble Asynchronous Model Parallel}$ training, and a $\textit{Parallel Multi-Ring All-Reduce}$ method is employed to effectively execute global parameter averaging across all clusters. We have framed our asynchronous SGD loss function as a block structured optimization problem with delayed updates and derived an optimal convergence rate of $O\left(\frac{1}{\sqrt{K}}\right)$. We further discuss linear speedup with respect to the number of participating clusters and the bound on the staleness parameter.
Before deploying outputs from foundation models in high-stakes tasks, it is imperative to ensure that they align with human values. For instance, in radiology report generation, reports generated by a vision-language model must align with human evaluations before their use in medical decision-making. This paper presents Conformal Alignment, a general framework for identifying units whose outputs meet a user-specified alignment criterion. It is guaranteed that on average, a prescribed fraction of selected units indeed meet the alignment criterion, regardless of the foundation model or the data distribution. Given any pre-trained model and new units with model-generated outputs, Conformal Alignment leverages a set of reference data with ground-truth alignment status to train an alignment predictor. It then selects new units whose predicted alignment scores surpass a data-dependent threshold, certifying their corresponding outputs as trustworthy. Through applications to question answering and radiology report generation, we demonstrate that our method is able to accurately identify units with trustworthy outputs via lightweight training over a moderate amount of reference data. En route, we investigate the informativeness of various features in alignment prediction and combine them with standard models to construct the alignment predictor.
Federated learning (FL) is a decentralized learning technique that enables participating devices to collaboratively build a shared Machine Leaning (ML) or Deep Learning (DL) model without revealing their raw data to a third party. Due to its privacy-preserving nature, FL has sparked widespread attention for building Intrusion Detection Systems (IDS) within the realm of cybersecurity. However, the data heterogeneity across participating domains and entities presents significant challenges for the reliable implementation of an FL-based IDS. In this paper, we propose an effective method called Statistical Averaging (StatAvg) to alleviate non-independently and identically (non-iid) distributed features across local clients' data in FL. In particular, StatAvg allows the FL clients to share their individual data statistics with the server, which then aggregates this information to produce global statistics. The latter are shared with the clients and used for universal data normalisation. It is worth mentioning that StatAvg can seamlessly integrate with any FL aggregation strategy, as it occurs before the actual FL training process. The proposed method is evaluated against baseline approaches using datasets for network and host Artificial Intelligence (AI)-powered IDS. The experimental results demonstrate the efficiency of StatAvg in mitigating non-iid feature distributions across the FL clients compared to the baseline methods.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.