亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted downlink (DL) active and uplink (UL) backscatter communication (BackCom) framework is proposed. More particularly, a full-duplex (FD) base station (BS) communicates with the DL users via the STAR-RIS's transmission link, while exciting and receiving the information from the UL BackCom devices with the aid of the STAR-RIS's reflection link. Non-orthogonal multiple access (NOMA) is exploited in both DL and UL communications for improving the spectrum efficiency. The system weighted sum rate maximization problem is formulated for jointly optimizing the FD BS active receive and transmit beamforming, the STAR- RIS passive beamforming, and the DL NOMA decoding orders, subject to the DL user's individual rate constraint. To tackle this challenging non-convex problem, we propose an alternating optimization (AO) based algorithm for the joint active and passive beamforming design with a given DL NOMA decoding order. To address the potential high computational complexity required for exhaustive searching all the NOMA decoding orders, an efficient NOMA user ordering scheme is further developed. Finally, numerical results demonstrate that: i) compared with the baseline schemes employing conventional RISs or space division multiple access, the proposed scheme achieves higher performance gains; and ii) higher UL rate gain is obtained at a cost of DL performance degradation, as a remedy, a more flexible performance tradeoff can be achieved by introducing the STAR-RIS.

相關內容

The uplink sum-throughput of distributed massive multiple-input-multiple-output (mMIMO) networks depends majorly on Access point (AP)-User Equipment (UE) association and power control. The AP-UE association and power control both are important problems in their own right in distributed mMIMO networks to improve scalability and reduce front-haul load of the network, and to enhance the system performance by mitigating the interference and boosting the desired signals, respectively. Unlike previous studies, which focused primarily on addressing these two problems separately, this work addresses the uplink sum-throughput maximization problem in distributed mMIMO networks by solving the joint AP-UE association and power control problem, while maintaining Quality-of-Service (QoS) requirements for each UE. To improve scalability, we present an l1-penalty function that delicately balances the trade-off between spectral efficiency (SE) and front-haul signaling load. Our proposed methodology leverages fractional programming, Lagrangian dual formation, and penalty functions to provide an elegant and effective iterative solution with guaranteed convergence. Extensive numerical simulations validate the efficacy of the proposed technique for maximizing sum-throughput while considering the joint AP-UE association and power control problem, demonstrating its superiority over approaches that address these problems individually. Furthermore, the results show that the introduced penalty function can help us effectively control the maximum front-haul load.

Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is a cutting-edge concept for the sixth-generation (6G) wireless networks. In this paper, we propose a novel system that incorporates STAR-RIS with simultaneous wireless information and power transfer (SWIPT) using rate splitting multiple access (RSMA). The proposed system facilitates communication from a multi-antenna base station (BS) to single-antenna users in a downlink transmission. The BS concurrently sends energy and information signals to multiple energy harvesting receivers (EHRs) and information data receivers (IDRs) with the support of a deployed STAR-RIS. Furthermore, an optimization is introduced to strike a balance between users' sum rate and the total harvested energy. To achieve this, an optimization problem is formulated to optimize the energy/information beamforming vectors at the BS, the phase shifts at the STAR-RIS, and the common message rate. Subsequently, we employ a meta deep deterministic policy gradient (Meta-DDPG) approach to solve the complex problem. Simulation results validate that the proposed algorithm significantly enhances both data rate and harvested energy in comparison to conventional DDPG.

High-level synthesis, source-to-source compilers, and various Design Space Exploration techniques for pragma insertion have significantly improved the Quality of Results of generated designs. These tools offer benefits such as reduced development time and enhanced performance. However, achieving high-quality results often requires additional manual code transformations and tiling selections, which are typically performed separately or as pre-processing steps. Although DSE techniques enable code transformation upfront, the vastness of the search space often limits the exploration of all possible code transformations, making it challenging to determine which transformations are necessary. Additionally, ensuring correctness remains challenging, especially for complex transformations and optimizations. To tackle this obstacle, we first propose a comprehensive framework leveraging HLS compilers. Our system streamlines code transformation, pragma insertion, and tiles size selection for on-chip data caching through a unified optimization problem, aiming to enhance parallelization, particularly beneficial for computation-bound kernels. Them employing a novel Non-Linear Programming (NLP) approach, we simultaneously ascertain transformations, pragmas, and tile sizes, focusing on regular loop-based kernels. Our evaluation demonstrates that our framework adeptly identifies the appropriate transformations, including scenarios where no transformation is necessary, and inserts pragmas to achieve a favorable Quality of Results.

Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but introduce significant challenges in real-world serving due to inefficient use of the expensive, computation-optimized accelerators. This mismatch arises from the autoregressive nature of LLMs, where the generation phase comprises operators with varying resource demands. Specifically, the attention operator is memory-intensive, exhibiting a memory access pattern that clashes with the strengths of modern accelerators, especially as context length increases. To enhance the efficiency and cost-effectiveness of LLM serving, we introduce the concept of attention offloading. This approach leverages a collection of cheap, memory-optimized devices for the attention operator while still utilizing high-end accelerators for other parts of the model. This heterogeneous setup ensures that each component is tailored to its specific workload, maximizing overall performance and cost efficiency. Our comprehensive analysis and experiments confirm the viability of splitting the attention computation over multiple devices. Also, the communication bandwidth required between heterogeneous devices proves to be manageable with prevalent networking technologies. To further validate our theory, we develop Lamina, an LLM inference system that incorporates attention offloading. Experimental results indicate that Lamina can provide 1.48x-12.1x higher estimated throughput per dollar than homogeneous solutions.

Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 <image, claim, label, explanation> instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.

The quest for robust Person re-identification (Re-ID) systems capable of accurately identifying subjects across diverse scenarios remains a formidable challenge in surveillance and security applications. This study presents a novel methodology that significantly enhances Person Re-Identification (Re-ID) by integrating Uncertainty Feature Fusion (UFFM) with Wise Distance Aggregation (WDA). Tested on benchmark datasets - Market-1501, DukeMTMC-ReID, and MSMT17 - our approach demonstrates substantial improvements in Rank-1 accuracy and mean Average Precision (mAP). Specifically, UFFM capitalizes on the power of feature synthesis from multiple images to overcome the limitations imposed by the variability of subject appearances across different views. WDA further refines the process by intelligently aggregating similarity metrics, thereby enhancing the system's ability to discern subtle but critical differences between subjects. The empirical results affirm the superiority of our method over existing approaches, achieving new performance benchmarks across all evaluated datasets. Code is available on Github.

Text-to-3D generation has achieved significant success by incorporating powerful 2D diffusion models, but insufficient 3D prior knowledge also leads to the inconsistency of 3D geometry. Recently, since large-scale multi-view datasets have been released, fine-tuning the diffusion model on the multi-view datasets becomes a mainstream to solve the 3D inconsistency problem. However, it has confronted with fundamental difficulties regarding the limited quality and diversity of 3D data, compared with 2D data. To sidestep these trade-offs, we explore a retrieval-augmented approach tailored for score distillation, dubbed ReDream. We postulate that both expressiveness of 2D diffusion models and geometric consistency of 3D assets can be fully leveraged by employing the semantically relevant assets directly within the optimization process. To this end, we introduce novel framework for retrieval-based quality enhancement in text-to-3D generation. We leverage the retrieved asset to incorporate its geometric prior in the variational objective and adapt the diffusion model's 2D prior toward view consistency, achieving drastic improvements in both geometry and fidelity of generated scenes. We conduct extensive experiments to demonstrate that ReDream exhibits superior quality with increased geometric consistency. Project page is available at //ku-cvlab.github.io/ReDream/.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司