亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stochastic patrol routing is known to be advantageous in adversarial settings; however, the optimal choice of stochastic routing strategy is dependent on a model of the adversary. Duan et al. formulated a Stackelberg game for the worst-case scenario, i.e., a surveillance agent confronted with an omniscient attacker [IEEE TCNS, 8(2), 769-80, 2021]. In this article, we extend their formulation to accommodate heterogeneous defenses at the various nodes of the graph. We derive an upper bound on the value of the game. We identify methods for computing effective patrol strategies for certain classes of graphs. Finally, we leverage the heterogeneous defense formulation to develop novel defense placement algorithms that complement the patrol strategies.

相關內容

Magnetic resonance imaging (MRI) is commonly used for brain tumor segmentation, which is critical for patient evaluation and treatment planning. To reduce the labor and expertise required for labeling, weakly-supervised semantic segmentation (WSSS) methods with class activation mapping (CAM) have been proposed. However, existing CAM methods suffer from low resolution due to strided convolution and pooling layers, resulting in inaccurate predictions. In this study, we propose a novel CAM method, Attentive Multiple-Exit CAM (AME-CAM), that extracts activation maps from multiple resolutions to hierarchically aggregate and improve prediction accuracy. We evaluate our method on the BraTS 2021 dataset and show that it outperforms state-of-the-art methods.

Achieving tight bounding boxes of a shape while guaranteeing complete boundness is an essential task for efficient geometric operations and unsupervised semantic part detection. But previous methods fail to achieve both full coverage and tightness. Neural-network-based methods are not suitable for these goals due to the non-differentiability of the objective, while classic iterative search methods suffer from their sensitivity to the initialization. We propose a novel framework for finding a set of tight bounding boxes of a 3D shape via over-segmentation and iterative merging and refinement. Our result shows that utilizing effective search methods with appropriate objectives is the key to producing bounding boxes with both properties. We employ an existing pre-segmentation to split the shape and obtain over-segmentation. Then, we apply hierarchical merging with our novel tightness-aware merging and stopping criteria. To overcome the sensitivity to the initialization, we also define actions to refine the bounding box parameters in an Markov Decision Process (MDP) setup with a soft reward function promoting a wider exploration. Lastly, we further improve the refinement step with Monte Carlo Tree Search (MCTS) based multi-action space exploration. By thoughtful evaluation on diverse 3D shapes, we demonstrate full coverage, tightness, and an adequate number of bounding boxes of our method without requiring any training data or supervision. It thus can be applied to various downstream tasks in computer vision and graphics.

Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM-based agents have become revolutionary in data engineering and have been applied creatively in various domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With thoughtful consideration of several specific challenges to leverage LLMs for OM, we propose a generic framework, namely Agent-OM, consisting of two Siamese agents for retrieval and matching, with a set of simple prompt-based OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve very close results to the best long-standing performance on simple OM tasks and significantly improve the performance on complex and few-shot OM tasks.

Work on personality detection has tended to incorporate psychological features from different personality models, such as BigFive and MBTI. There are more than 900 psychological features, each of which is helpful for personality detection. However, when used in combination, the application of different calculation standards among these features may result in interference between features calculated using distinct systems, thereby introducing noise and reducing performance. This paper adapts different psychological models in the proposed PsyAttention for personality detection, which can effectively encode psychological features, reducing their number by 85%. In experiments on the BigFive and MBTI models, PysAttention achieved average accuracy of 65.66% and 86.30%, respectively, outperforming state-of-the-art methods, indicating that it is effective at encoding psychological features.

We propose CatVersion, an inversion-based method that learns the personalized concept through a handful of examples. Subsequently, users can utilize text prompts to generate images that embody the personalized concept, thereby achieving text-to-image personalization. In contrast to existing approaches that emphasize word embedding learning or parameter fine-tuning for the diffusion model, which potentially causes concept dilution or overfitting, our method concatenates embeddings on the feature-dense space of the text encoder in the diffusion model to learn the gap between the personalized concept and its base class, aiming to maximize the preservation of prior knowledge in diffusion models while restoring the personalized concepts. To this end, we first dissect the text encoder's integration in the image generation process to identify the feature-dense space of the encoder. Afterward, we concatenate embeddings on the Keys and Values in this space to learn the gap between the personalized concept and its base class. In this way, the concatenated embeddings ultimately manifest as a residual on the original attention output. To more accurately and unbiasedly quantify the results of personalized image generation, we improve the CLIP image alignment score based on masks. Qualitatively and quantitatively, CatVersion helps to restore personalization concepts more faithfully and enables more robust editing.

Photonic computing is a compelling avenue for performing highly efficient matrix multiplication, a crucial operation in Deep Neural Networks (DNNs). While this method has shown great success in DNN inference, meeting the high precision demands of DNN training proves challenging due to the precision limitations imposed by costly data converters and the analog noise inherent in photonic hardware. This paper proposes Mirage, a photonic DNN training accelerator that overcomes the precision challenges in photonic hardware using the Residue Number System (RNS). RNS is a numeral system based on modular arithmetic$\unicode{x2014}$allowing us to perform high-precision operations via multiple low-precision modular operations. In this work, we present a novel micro-architecture and dataflow for an RNS-based photonic tensor core performing modular arithmetic in the analog domain. By combining RNS and photonics, Mirage provides high energy efficiency without compromising precision and can successfully train state-of-the-art DNNs achieving accuracy comparable to FP32 training. Our study shows that on average across several DNNs when compared to systolic arrays, Mirage achieves more than $23.8\times$ faster training and $32.1\times$ lower EDP in an iso-energy scenario and consumes $42.8\times$ lower power with comparable or better EDP in an iso-area scenario.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

北京阿比特科技有限公司