Thresholds in treatment assignments can produce discontinuities in outcomes, revealing causal insights. In many contexts, like geographic settings, these thresholds are unknown and multivariate. We propose a non-parametric method to estimate the resulting discontinuities by segmenting the regression surface into smooth and discontinuous parts. This estimator uses a convex relaxation of the Mumford-Shah functional, for which we establish identification and convergence. Using our method, we estimate that an internet shutdown in India resulted in a reduction of economic activity by over 50%, greatly surpassing previous estimates and shedding new light on the true cost of such shutdowns for digital economies globally.
With the development of trustworthy Federated Learning (FL), the requirement of implementing right to be forgotten gives rise to the area of Federated Unlearning (FU). Comparing to machine unlearning, a major challenge of FU lies in the decentralized and privacy-preserving nature of FL, in which clients jointly train a global model without sharing their raw data, making it substantially more intricate to selectively unlearn specific information. In that regard, many efforts have been made to tackle the challenges of FU and have achieved significant progress. In this paper, we present a comprehensive survey of FU. Specially, we provide the existing algorithms, objectives, evaluation metrics, and identify some challenges of FU. By reviewing and comparing some studies, we summarize them into a taxonomy for various schemes, potential applications and future directions.
Prediction markets are long known for prediction accuracy. This study systematically explores the fundamental properties of prediction markets, addressing questions about their information aggregation process and the factors contributing to their remarkable efficacy. We propose a novel multivariate utility (MU) based mechanism that unifies several existing automated market-making schemes. Using this mechanism, we establish the convergence results for markets comprised of risk-averse traders who have heterogeneous beliefs and repeatedly interact with the market maker. We demonstrate that the resulting limiting wealth distribution aligns with the Pareto efficient frontier defined by the utilities of all market participants. With the help of this result, we establish analytical and numerical results for the limiting price in different market models. Specifically, we show that the limiting price converges to the geometric mean of agent beliefs in exponential utility-based markets. In risk-measure-based markets, we construct a family of risk measures that satisfy the convergence criteria and prove that the price can converge to a unique level represented by the weighted power mean of agent beliefs. In broader markets with Constant Relative Risk Aversion (CRRA) utilities, we reveal that the limiting price can be characterized by systems of equations that encapsulate agent beliefs, risk parameters, and wealth. Despite the potential impact of traders' trading sequences on the limiting price, we establish a price invariance result for markets with a large trader population. Using this result, we propose an efficient approximation scheme for the limiting price.
Humans tend to strongly agree on ratings on a scale for extreme cases (e.g., a CAT is judged as very concrete), but judgements on mid-scale words exhibit more disagreement. Yet, collected rating norms are heavily exploited across disciplines. Our study focuses on concreteness ratings and (i) implements correlations and supervised classification to identify salient multi-modal characteristics of mid-scale words, and (ii) applies a hard clustering to identify patterns of systematic disagreement across raters. Our results suggest to either fine-tune or filter mid-scale target words before utilising them.
Developmental psychologists have spent decades devising experiments to test the intelligence and knowledge of infants and children, tracing the origin of crucial concepts and capacities. Moreover, experimental techniques in developmental psychology have been carefully designed to discriminate the cognitive capacities that underlie particular behaviors. We propose that using classical experiments from child development is a particularly effective way to probe the computational abilities of AI models, in general, and LLMs in particular. First, the methodological techniques of developmental psychology, such as the use of novel stimuli to control for past experience or control conditions to determine whether children are using simple associations, can be equally helpful for assessing the capacities of LLMs. In parallel, testing LLMs in this way can tell us whether the information that is encoded in text is sufficient to enable particular responses, or whether those responses depend on other kinds of information, such as information from exploration of the physical world. In this work we adapt classical developmental experiments to evaluate the capabilities of LaMDA, a large language model from Google. We propose a novel LLM Response Score (LRS) metric which can be used to evaluate other language models, such as GPT. We find that LaMDA generates appropriate responses that are similar to those of children in experiments involving social understanding, perhaps providing evidence that knowledge of these domains is discovered through language. On the other hand, LaMDA's responses in early object and action understanding, theory of mind, and especially causal reasoning tasks are very different from those of young children, perhaps showing that these domains require more real-world, self-initiated exploration and cannot simply be learned from patterns in language input.
Agents often exert influence when interacting with humans and non-human agents. However, the ethical status of such influence is often unclear. In this paper, we present the SHAPE framework, which lists reasons why influence may be unethical. We draw on literature from descriptive and moral philosophy and connect it to machine learning to help guide ethical considerations when developing algorithms with potential influence. Lastly, we explore mechanisms for governing algorithmic systems that influence people, inspired by mechanisms used in journalism, human subject research, and advertising.
Like many optimizers, Bayesian optimization often falls short of gaining user trust due to opacity. While attempts have been made to develop human-centric optimizers, they typically assume user knowledge is well-specified and error-free, employing users mainly as supervisors of the optimization process. We relax these assumptions and propose a more balanced human-AI partnership with our Collaborative and Explainable Bayesian Optimization (CoExBO) framework. Instead of explicitly requiring a user to provide a knowledge model, CoExBO employs preference learning to seamlessly integrate human insights into the optimization, resulting in algorithmic suggestions that resonate with user preference. CoExBO explains its candidate selection every iteration to foster trust, empowering users with a clearer grasp of the optimization. Furthermore, CoExBO offers a no-harm guarantee, allowing users to make mistakes; even with extreme adversarial interventions, the algorithm converges asymptotically to a vanilla Bayesian optimization. We validate CoExBO's efficacy through human-AI teaming experiments in lithium-ion battery design, highlighting substantial improvements over conventional methods.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.