亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automated coaching messages for weight control can save time and costs, but their repetitive, generic nature may limit their effectiveness compared to human coaching. Large language model (LLM) based artificial intelligence (AI) chatbots, like ChatGPT, could offer more personalized and novel messages to address repetition with their data-processing abilities. While LLM AI demonstrates promise to encourage healthier lifestyles, studies have yet to examine the feasibility and acceptability of LLM-based BWL coaching. 87 adults in a weight-loss trial rated ten coaching messages' helpfulness (five human-written, five ChatGPT-generated) using a 5-point Likert scale, providing additional open-ended feedback to justify their ratings. Participants also identified which messages they believed were AI-generated. The evaluation occurred in two phases: messages in Phase 1 were perceived as impersonal and negative, prompting revisions for Phase 2 messages. In Phase 1, AI-generated messages were rated less helpful than human-written ones, with 66 percent receiving a helpfulness rating of 3 or higher. However, in Phase 2, the AI messages matched the human-written ones regarding helpfulness, with 82% scoring three or above. Additionally, 50% were misidentified as human-written, suggesting AI's sophistication in mimicking human-generated content. A thematic analysis of open-ended feedback revealed that participants appreciated AI's empathy and personalized suggestions but found them more formulaic, less authentic, and too data-focused. This study reveals the preliminary feasibility and acceptability of LLM AIs, like ChatGPT, in crafting potentially effective weight control coaching messages. Our findings also underscore areas for future enhancement.

相關內容

大語言(yan)(yan)(yan)模型(xing)是基于海量文(wen)本數據訓(xun)練的深(shen)度學習模型(xing)。它不僅能(neng)夠(gou)(gou)(gou)生成自然語言(yan)(yan)(yan)文(wen)本,還(huan)能(neng)夠(gou)(gou)(gou)深(shen)入理解(jie)文(wen)本含義,處理各種自然語言(yan)(yan)(yan)任務(wu),如(ru)文(wen)本摘要、問答、翻(fan)譯等。2023年(nian),大語言(yan)(yan)(yan)模型(xing)及其在(zai)(zai)人(ren)(ren)工智(zhi)能(neng)領域的應(ying)用已成為全球科技研究的熱(re)點,其在(zai)(zai)規模上的增長尤為引人(ren)(ren)注(zhu)目,參數量已從(cong)最初的十幾億(yi)躍升(sheng)(sheng)到如(ru)今的一(yi)萬億(yi)。參數量的提升(sheng)(sheng)使得模型(xing)能(neng)夠(gou)(gou)(gou)更(geng)加(jia)精細(xi)地捕捉人(ren)(ren)類語言(yan)(yan)(yan)微妙之(zhi)處,更(geng)加(jia)深(shen)入地理解(jie)人(ren)(ren)類語言(yan)(yan)(yan)的復(fu)(fu)雜性(xing)。在(zai)(zai)過(guo)去的一(yi)年(nian)里,大語言(yan)(yan)(yan)模型(xing)在(zai)(zai)吸納新知識(shi)、分解(jie)復(fu)(fu)雜任務(wu)以及圖文(wen)對(dui)齊等多方面都有顯著(zhu)(zhu)提升(sheng)(sheng)。隨著(zhu)(zhu)技術的不斷成熟,它將不斷拓展其應(ying)用范圍,為人(ren)(ren)類提供更(geng)加(jia)智(zhi)能(neng)化(hua)和個性(xing)化(hua)的服務(wu),進一(yi)步改善(shan)人(ren)(ren)們的生活(huo)和生產方式。

Malware is one of the most common and severe cyber-attack today. Malware infects millions of devices and can perform several malicious activities including mining sensitive data, encrypting data, crippling system performance, and many more. Hence, malware detection is crucial to protect our computers and mobile devices from malware attacks. Deep learning (DL) is one of the emerging and promising technologies for detecting malware. The recent high production of malware variants against desktop and mobile platforms makes DL algorithms powerful approaches for building scalable and advanced malware detection models as they can handle big datasets. This work explores current deep learning technologies for detecting malware attacks on the Windows, Linux, and Android platforms. Specifically, we present different categories of DL algorithms, network optimizers, and regularization methods. Different loss functions, activation functions, and frameworks for implementing DL models are presented. We also present feature extraction approaches and a review of recent DL-based models for detecting malware attacks on the above platforms. Furthermore, this work presents major research issues on malware detection including future directions to further advance knowledge and research in this field.

The metaverse refers to the merger of technologies for providing a digital twin of the real world and the underlying connectivity and interactions for the many kinds of agents within. As this set of technology paradigms - involving artificial intelligence, mixed reality, the internet-of-things and others - gains in scale, maturity, and utility there are rapidly emerging design challenges and new research opportunities. In particular is the metaverse disconnect problem, the gap in task switching that inevitably occurs when a user engages with multiple virtual and physical environments simultaneously. Addressing this gap remains an open issue that affects the user experience and must be overcome to increase overall utility of the metaverse. This article presents design frameworks that consider how to address the metaverse as a hyper-connected meta-environment that connects and expands multiple user environments, modalities, contexts, and the many objects and relationships within them. This article contributes to i) a framing of the metaverse as a social XR-IoT (XRI) concept, ii) design Considerations for XRI metaverse experiences, iii) a design architecture for social multi-user XRI metaverse environments, and iv) descriptive exploration of social interaction scenarios within XRI multi-user metaverses. These contribute a new design framework for metaverse researchers and creators to consider the coming wave of interconnected and immersive smart environments.

We show that a distributed network of robots or other devices which make measurements of each other can collaborate to globally localise via efficient ad-hoc peer to peer communication. Our Robot Web solution is based on Gaussian Belief Propagation on the fundamental non-linear factor graph describing the probabilistic structure of all of the observations robots make internally or of each other, and is flexible for any type of robot, motion or sensor. We define a simple and efficient communication protocol which can be implemented by the publishing and reading of web pages or other asynchronous communication technologies. We show in simulations with up to 1000 robots interacting in arbitrary patterns that our solution convergently achieves global accuracy as accurate as a centralised non-linear factor graph solver while operating with high distributed efficiency of computation and communication. Via the use of robust factors in GBP, our method is tolerant to a high percentage of faults in sensor measurements or dropped communication packets.

Neural networks are vulnerable to adversarial attacks, i.e., small input perturbations can result in substantially different outputs of a neural network. Safety-critical environments require neural networks that are robust against input perturbations. However, training and formally verifying robust neural networks is challenging. We address this challenge by employing, for the first time, a end-to-end set-based training procedure that trains robust neural networks for formal verification. Our training procedure drastically simplifies the subsequent formal robustness verification of the trained neural network. While previous research has predominantly focused on augmenting neural network training with adversarial attacks, our approach leverages set-based computing to train neural networks with entire sets of perturbed inputs. Moreover, we demonstrate that our set-based training procedure effectively trains robust neural networks, which are easier to verify. In many cases, set-based trained neural networks outperform neural networks trained with state-of-the-art adversarial attacks.

The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.

Soft electrohydraulic actuators known as HASEL actuators have attracted widespread research interest due to their outstanding dynamic performance and high output power. However, the displacement of electrohydraulic actuators usually declines with time under constant DC voltage, which hampers its prospective application. A mathematical model is firstly established to not only explain the decrease in displacement under DC voltage but also predict the relatively stable displacement with oscillation under AC square wave voltage. The mathematical model is validated since the actual displacement confirms the trend observed by our model. To smooth the displacement oscillation introduced by AC voltage, a serial elastic component is incorporated to form a SE-HASEL actuator. A feedback control with a proportion-integration algorithm enables the SE-HASEL actuator to eliminate the obstinate displacement hysteresis. Our results revealed that, through our methodology, the SE-HASEL actuator can give stable and smooth displacement and is capable of absorbing external impact disturbance simultaneously. A rotary joint based on the SE-HASEL actuator is developed to reflect its possibility to generate a common rotary motion for wide robotic applications. More importantly, this paper also proposes a highly accurate needle biopsy robot that can be utilized in MRI-guide surgical procedures. Overall, we have achieved AC-driven series elastic electrohydraulic actuators that can exhibit stable and smooth displacement output.

Convolutional neural networks have shown to be widely applicable to a large number of fields when large amounts of labelled data are available. The recent trend has been to use models with increasingly larger sets of tunable parameters to increase model accuracy, reduce model loss, or create more adversarially robust models -- goals that are often at odds with one another. In particular, recent theoretical work raises questions about the ability for even larger models to generalize to data outside of the controlled train and test sets. As such, we examine the role of the number of hidden layers in the ResNet model, demonstrated on the MNIST, CIFAR10, CIFAR100 datasets. We test a variety of parameters including the size of the model, the floating point precision, and the noise level of both the training data and the model output. To encapsulate the model's predictive power and computational cost, we provide a method that uses induced failures to model the probability of failure as a function of time and relate that to a novel metric that allows us to quickly determine whether or not the cost of training a model outweighs the cost of attacking it. Using this approach, we are able to approximate the expected failure rate using a small number of specially crafted samples rather than increasingly larger benchmark datasets. We demonstrate the efficacy of this technique on both the MNIST and CIFAR10 datasets using 8-, 16-, 32-, and 64-bit floating-point numbers, various data pre-processing techniques, and several attacks on five configurations of the ResNet model. Then, using empirical measurements, we examine the various trade-offs between cost, robustness, latency, and reliability to find that larger models do not significantly aid in adversarial robustness despite costing significantly more to train.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司