亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) is a paradigm that allows distributed clients to learn a shared machine learning model without sharing their sensitive training data. While largely decentralized, FL requires resources to fund a central orchestrator or to reimburse contributors of datasets to incentivize participation. Inspired by insights from prior-independent auction design, we propose a mechanism, FIPIA (Federated Incentive Payments via Prior-Independent Auctions), to collect monetary contributions from self-interested clients. The mechanism operates in the semi-honest trust model and works even if clients have a heterogeneous interest in receiving high-quality models, and the server does not know the clients' level of interest. We run experiments on the MNIST, FashionMNIST, and CIFAR-10 datasets to test clients' model quality under FIPIA and FIPIA's incentive properties.

相關內容

聯邦學(xue)(xue)(xue)習(xi)(Federated Learning)是(shi)一(yi)種新興的(de)(de)人(ren)(ren)工智能基礎(chu)技術(shu),在 2016 年由(you)谷歌最先提(ti)出(chu),原本用(yong)于解(jie)決安卓(zhuo)手機(ji)終(zhong)端用(yong)戶在本地(di)更新模型的(de)(de)問題,其設計(ji)目標是(shi)在保障大(da)數據交換時的(de)(de)信息安全(quan)、保護終(zhong)端數據和(he)個(ge)人(ren)(ren)數據隱私、保證合法(fa)合規(gui)的(de)(de)前(qian)提(ti)下,在多(duo)參與方或(huo)多(duo)計(ji)算結(jie)點(dian)之間開展高效率的(de)(de)機(ji)器(qi)學(xue)(xue)(xue)習(xi)。其中,聯邦學(xue)(xue)(xue)習(xi)可使(shi)用(yong)的(de)(de)機(ji)器(qi)學(xue)(xue)(xue)習(xi)算法(fa)不(bu)局限(xian)于神經網絡,還包(bao)括隨機(ji)森林(lin)等重要算法(fa)。聯邦學(xue)(xue)(xue)習(xi)有(you)望成為下一(yi)代人(ren)(ren)工智能協同算法(fa)和(he)協作(zuo)網絡的(de)(de)基礎(chu)。

Motivated by the explosive computing capabilities at end user equipments, as well as the growing privacy concerns over sharing sensitive raw data, a new machine learning paradigm, named federated learning (FL) has emerged. By training models locally at each client and aggregating learning models at a central server, FL has the capability to avoid sharing data directly, thereby reducing privacy leakage. However, the traditional FL framework heavily relies on a single central server and may fall apart if such a server behaves maliciously. To address this single point of failure issue, this work investigates a blockchain assisted decentralized FL (BLADE-FL) framework, which can well prevent the malicious clients from poisoning the learning process, and further provides a self-motivated and reliable learning environment for clients. In detail, the model aggregation process is fully decentralized and the tasks of training for FL and mining for blockchain are integrated into each participant. In addition, we investigate the unique issues in this framework and provide analytical and experimental results to shed light on possible solutions.

Client contribution evaluation, also known as data valuation, is a crucial approach in federated learning(FL) for client selection and incentive allocation. However, due to restrictions of accessibility of raw data, only limited information such as local weights and local data size of each client is open for quantifying the client contribution. Using data size from available information, we introduce an empirical evaluation method called Federated Client Contribution Evaluation through Accuracy Approximation(FedCCEA). This method builds the Accuracy Approximation Model(AAM), which estimates a simulated test accuracy using inputs of sampled data size and extracts the clients' data quality and data size to measure client contribution. FedCCEA strengthens some advantages: (1) enablement of data size selection to the clients, (2) feasible evaluation time regardless of the number of clients, and (3) precise estimation in non-IID settings. We demonstrate the superiority of FedCCEA compared to previous methods through several experiments: client contribution distribution, client removal, and robustness test to partial participation.

Distributed multi-agent learning enables agents to cooperatively train a model without requiring to share their datasets. While this setting ensures some level of privacy, it has been shown that, even when data is not directly shared, the training process is vulnerable to privacy attacks including data reconstruction and model inversion attacks. Additionally, malicious agents that train on inverted labels or random data, may arbitrarily weaken the accuracy of the global model. This paper addresses these challenges and presents Privacy-preserving and trustable Distributed Learning (PT-DL), a fully decentralized framework that relies on Differential Privacy to guarantee strong privacy protections of the agents' data, and Ethereum smart contracts to ensure trustability. The paper shows that PT-DL is resilient up to a 50% collusion attack, with high probability, in a malicious trust model and the experimental evaluation illustrates the benefits of the proposed model as a privacy-preserving and trustable distributed multi-agent learning system on several classification tasks.

With the rapid development of storage and computing power on mobile devices, it becomes critical and popular to deploy models on devices to save onerous communication latencies and to capture real-time features. While quite a lot of works have explored to facilitate on-device learning and inference, most of them focus on dealing with response delay or privacy protection. Little has been done to model the collaboration between the device and the cloud modeling and benefit both sides jointly. To bridge this gap, we are among the first attempts to study the Device-Cloud Collaborative Learning (DCCL) framework. Specifically, we propose a novel MetaPatch learning approach on the device side to efficiently achieve "thousands of people with thousands of models" given a centralized cloud model. Then, with billions of updated personalized device models, we propose a "model-over-models" distillation algorithm, namely MoMoDistill, to update the centralized cloud model. Our extensive experiments over a range of datasets with different settings demonstrate the effectiveness of such collaboration on both cloud and devices, especially its superiority to model long-tailed users.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

When the federated learning is adopted among competitive agents with siloed datasets, agents are self-interested and participate only if they are fairly rewarded. To encourage the application of federated learning, this paper employs a management strategy, i.e., more contributions should lead to more rewards. We propose a novel hierarchically fair federated learning (HFFL) framework. Under this framework, agents are rewarded in proportion to their pre-negotiated contribution levels. HFFL+ extends this to incorporate heterogeneous models. Theoretical analysis and empirical evaluation on several datasets confirm the efficacy of our frameworks in upholding fairness and thus facilitating federated learning in the competitive settings.

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

We train a recurrent neural network language model using a distributed, on-device learning framework called federated learning for the purpose of next-word prediction in a virtual keyboard for smartphones. Server-based training using stochastic gradient descent is compared with training on client devices using the Federated Averaging algorithm. The federated algorithm, which enables training on a higher-quality dataset for this use case, is shown to achieve better prediction recall. This work demonstrates the feasibility and benefit of training language models on client devices without exporting sensitive user data to servers. The federated learning environment gives users greater control over their data and simplifies the task of incorporating privacy by default with distributed training and aggregation across a population of client devices.

北京阿比特科技有限公司