亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a preliminary work, NeRF-Det unifies the tasks of novel view synthesis and 3D perception, demonstrating that perceptual tasks can benefit from novel view synthesis methods like NeRF, significantly improving the performance of indoor multi-view 3D object detection. Using the geometry MLP of NeRF to direct the attention of detection head to crucial parts and incorporating self-supervised loss from novel view rendering contribute to the achieved improvement. To better leverage the notable advantages of the continuous representation through neural rendering in space, we introduce a novel 3D perception network structure, NeRF-DetS. The key component of NeRF-DetS is the Multi-level Sampling-Adaptive Network, making the sampling process adaptively from coarse to fine. Also, we propose a superior multi-view information fusion method, known as Multi-head Weighted Fusion. This fusion approach efficiently addresses the challenge of losing multi-view information when using arithmetic mean, while keeping low computational costs. NeRF-DetS outperforms competitive NeRF-Det on the ScanNetV2 dataset, by achieving +5.02% and +5.92% improvement in [email protected] and [email protected], respectively.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Accurate, detailed, and high-frequent bathymetry, coupled with complex semantic content, is crucial for the undermapped shallow seabed areas facing intense climatological and anthropogenic pressures. Current methods exploiting remote sensing images to derive bathymetry or seabed classes mainly exploit non-open data. This lack of openly accessible benchmark archives prevents the wider use of deep learning methods in such applications. To address this issue, in this paper we present the MagicBathyNet, which is a benchmark dataset made up of image patches of Sentinel2, SPOT-6 and aerial imagery, bathymetry in raster format and annotations of seabed classes. MagicBathyNet is then exploited to benchmark state-of-the-art methods in learning-based bathymetry and pixel-based classification. Dataset, pre-trained weights, and code are publicly available at www.magicbathy.eu/magicbathynet.html.

As text-conditioned diffusion models (DMs) achieve breakthroughs in image, video, and 3D generation, the research community's focus has shifted to the more challenging task of text-to-4D synthesis, which introduces a temporal dimension to generate dynamic 3D objects. In this context, we identify Score Distillation Sampling (SDS), a widely used technique for text-to-3D synthesis, as a significant hindrance to text-to-4D performance due to its Janus-faced and texture-unrealistic problems coupled with high computational costs. In this paper, we propose \textbf{P}ixel-\textbf{L}evel \textbf{A}lignments for Text-to-\textbf{4D} Gaussian Splatting (\textbf{PLA4D}), a novel method that utilizes text-to-video frames as explicit pixel alignment targets to generate static 3D objects and inject motion into them. Specifically, we introduce Focal Alignment to calibrate camera poses for rendering and GS-Mesh Contrastive Learning to distill geometry priors from rendered image contrasts at the pixel level. Additionally, we develop Motion Alignment using a deformation network to drive changes in Gaussians and implement Reference Refinement for smooth 4D object surfaces. These techniques enable 4D Gaussian Splatting to align geometry, texture, and motion with generated videos at the pixel level. Compared to previous methods, PLA4D produces synthesized outputs with better texture details in less time and effectively mitigates the Janus-faced problem. PLA4D is fully implemented using open-source models, offering an accessible, user-friendly, and promising direction for 4D digital content creation. Our project page: //github.com/MiaoQiaowei/PLA4D.github.io.

In this work we present CppFlow - a novel and performant planner for the Cartesian Path Planning problem, which finds valid trajectories up to 129x faster than current methods, while also succeeding on more difficult problems where others fail. At the core of the proposed algorithm is the use of a learned, generative Inverse Kinematics solver, which is able to efficiently produce promising entire candidate solution trajectories on the GPU. Precise, valid solutions are then found through classical approaches such as differentiable programming, global search, and optimization. In combining approaches from these two paradigms we get the best of both worlds - efficient approximate solutions from generative AI which are made exact using the guarantees of traditional planning and optimization. We evaluate our system against other state of the art methods on a set of established baselines as well as new ones introduced in this work and find that our method significantly outperforms others in terms of the time to find a valid solution and planning success rate, and performs comparably in terms of trajectory length over time. The work is made open source and available for use upon acceptance.

(Renyi Qu's Master's Thesis) Recent advancements in interpretable models for vision-language tasks have achieved competitive performance; however, their interpretability often suffers due to the reliance on unstructured text outputs from large language models (LLMs). This introduces randomness and compromises both transparency and reliability, which are essential for addressing safety issues in AI systems. We introduce \texttt{Hi-CoDe} (Hierarchical Concept Decomposition), a novel framework designed to enhance model interpretability through structured concept analysis. Our approach consists of two main components: (1) We use GPT-4 to decompose an input image into a structured hierarchy of visual concepts, thereby forming a visual concept tree. (2) We then employ an ensemble of simple linear classifiers that operate on concept-specific features derived from CLIP to perform classification. Our approach not only aligns with the performance of state-of-the-art models but also advances transparency by providing clear insights into the decision-making process and highlighting the importance of various concepts. This allows for a detailed analysis of potential failure modes and improves model compactness, therefore setting a new benchmark in interpretability without compromising the accuracy.

Modern Artificial Intelligence (AI) workloads demand computing systems with large silicon area to sustain throughput and competitive performance. However, prohibitive manufacturing costs and yield limitations at advanced tech nodes and die-size reaching the reticle limit restrain us from achieving this. With the recent innovations in advanced packaging technologies, chiplet-based architectures have gained significant attention in the AI hardware domain. However, the vast design space of chiplet-based AI accelerator design and the absence of system and package-level co-design methodology make it difficult for the designer to find the optimum design point regarding Power, Performance, Area, and manufacturing Cost (PPAC). This paper presents Chiplet-Gym, a Reinforcement Learning (RL)-based optimization framework to explore the vast design space of chiplet-based AI accelerators, encompassing the resource allocation, placement, and packaging architecture. We analytically model the PPAC of the chiplet-based AI accelerator and integrate it into an OpenAI gym environment to evaluate the design points. We also explore non-RL-based optimization approaches and combine these two approaches to ensure the robustness of the optimizer. The optimizer-suggested design point achieves 1.52X throughput, 0.27X energy, and 0.01X die cost while incurring only 1.62X package cost of its monolithic counterpart at iso-area.

Large Language Models (LLMs) have shown remarkable capabilities in tasks such as summarization, arithmetic reasoning, and question answering. However, they encounter significant challenges in the domain of moral reasoning and ethical decision-making, especially in complex scenarios with multiple stakeholders. This paper introduces the Skin-in-the-Game (SKIG) framework, aimed at enhancing moral reasoning in LLMs by exploring decisions' consequences from multiple stakeholder perspectives. Central to SKIG's mechanism is simulating accountability for actions, which, alongside empathy exercises and risk assessment, is pivotal to its effectiveness. We validate SKIG's performance across various moral reasoning benchmarks with proprietary and opensource LLMs, and investigate its crucial components through extensive ablation analyses.

Large language models~(LLMs) have recently demonstrated promising performance in many tasks. However, the high storage and computational cost of LLMs has become a challenge for deploying LLMs. Weight quantization has been widely used for model compression, which can reduce both storage and computational cost. Most existing weight quantization methods for LLMs use a rank-one codebook for quantization, which results in substantial accuracy loss when the compression ratio is high. In this paper, we propose a novel weight quantization method, called low-rank codebook based quantization~(LCQ), for LLMs. LCQ adopts a low-rank codebook, the rank of which can be larger than one, for quantization. Experiments show that LCQ can achieve better accuracy than existing methods with a negligibly extra storage cost.

The Sequential Sentence Classification task within the domain of medical abstracts, termed as SSC, involves the categorization of sentences into pre-defined headings based on their roles in conveying critical information in the abstract. In the SSC task, sentences are sequentially related to each other. For this reason, the role of sentence embeddings is crucial for capturing both the semantic information between words in the sentence and the contextual relationship of sentences within the abstract, which then enhances the SSC system performance. In this paper, we propose a LSTM-based deep learning network with a focus on creating comprehensive sentence representation at the sentence level. To demonstrate the efficacy of the created sentence representation, a system utilizing these sentence embeddings is also developed, which consists of a Convolutional-Recurrent neural network (C-RNN) at the abstract level and a multi-layer perception network (MLP) at the segment level. Our proposed system yields highly competitive results compared to state-of-the-art systems and further enhances the F1 scores of the baseline by 1.0%, 2.8%, and 2.6% on the benchmark datasets PudMed 200K RCT, PudMed 20K RCT and NICTA-PIBOSO, respectively. This indicates the significant impact of improving sentence representation on boosting model performance.

Expressive speech-to-speech translation (S2ST) is a key research topic in seamless communication, which focuses on the preservation of semantics and speaker vocal style in translated speech. Early works synthesized speaker style aligned speech in order to directly learn the mapping from speech to target speech spectrogram. Without reliance on style aligned data, recent studies leverage the advances of language modeling (LM) and build cascaded LMs on semantic and acoustic tokens. This work proposes SeamlessExpressiveLM, a single speech language model for expressive S2ST. We decompose the complex source-to-target speech mapping into intermediate generation steps with chain-of-thought prompting. The model is first guided to translate target semantic content and then transfer the speaker style to multi-stream acoustic units. Evaluated on Spanish-to-English and Hungarian-to-English translations, SeamlessExpressiveLM outperforms cascaded LMs in both semantic quality and style transfer, meanwhile achieving better parameter efficiency.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

北京阿比特科技有限公司