Transfer learning is a common practice that alleviates the need for extensive data to train neural networks. It is performed by pre-training a model using a source dataset and fine-tuning it for a target task. However, not every source dataset is appropriate for each target dataset, especially for time series. In this paper, we propose a novel method of selecting and using multiple datasets for transfer learning for time series classification. Specifically, our method combines multiple datasets as one source dataset for pre-training neural networks. Furthermore, for selecting multiple sources, our method measures the transferability of datasets based on shapelet discovery for effective source selection. While traditional transferability measures require considerable time for pre-training all the possible sources for source selection of each possible architecture, our method can be repeatedly used for every possible architecture with a single simple computation. Using the proposed method, we demonstrate that it is possible to increase the performance of temporal convolutional neural networks (CNN) on time series datasets.
Symmetries are prevalent in deep learning and can significantly influence the learning dynamics of neural networks. In this paper, we examine how exponential symmetries -- a broad subclass of continuous symmetries present in the model architecture or loss function -- interplay with stochastic gradient descent (SGD). We first prove that gradient noise creates a systematic motion (a ``Noether flow") of the parameters $\theta$ along the degenerate direction to a unique initialization-independent fixed point $\theta^*$. These points are referred to as the {\it noise equilibria} because, at these points, noise contributions from different directions are balanced and aligned. Then, we show that the balance and alignment of gradient noise can serve as a novel alternative mechanism for explaining important phenomena such as progressive sharpening/flattening and representation formation within neural networks and have practical implications for understanding techniques like representation normalization and warmup.
Content moderation typically combines the efforts of human moderators and machine learning models.However, these systems often rely on data where significant disagreement occurs during moderation, reflecting the subjective nature of toxicity perception.Rather than dismissing this disagreement as noise, we interpret it as a valuable signal that highlights the inherent ambiguity of the content,an insight missed when only the majority label is considered.In this work, we introduce a novel content moderation framework that emphasizes the importance of capturing annotation disagreement. Our approach uses multitask learning, where toxicity classification serves as the primary task and annotation disagreement is addressed as an auxiliary task.Additionally, we leverage uncertainty estimation techniques, specifically Conformal Prediction, to account for both the ambiguity in comment annotations and the model's inherent uncertainty in predicting toxicity and disagreement.The framework also allows moderators to adjust thresholds for annotation disagreement, offering flexibility in determining when ambiguity should trigger a review.We demonstrate that our joint approach enhances model performance, calibration, and uncertainty estimation, while offering greater parameter efficiency and improving the review process in comparison to single-task methods.
Federated learning (FL) is an innovative distributed artificial intelligence (AI) technique. It has been used for interdisciplinary studies in different fields such as healthcare, marketing and finance. However the application of FL in wireless networks is still in its infancy. In this work, we first overview benefits and concerns when applying FL to wireless networks. Next, we provide a new perspective on existing personalized FL frameworks by analyzing the relationship between cooperation and personalization in these frameworks. Additionally, we discuss the possibility of tuning the cooperation level with a choice-based approach. Our choice-based FL approach is a flexible and safe FL framework that allows participants to lower the level of cooperation when they feel unsafe or unable to benefit from the cooperation. In this way, the choice-based FL framework aims to address the safety and fairness concerns in FL and protect participants from malicious attacks.
Distributed machine learning has recently become a critical paradigm for training large models on vast datasets. We examine the stochastic optimization problem for deep learning within synchronous parallel computing environments under communication constraints. While averaging distributed gradients is the most widely used method for gradient estimation, whether this is the optimal strategy remains an open question. In this work, we analyze the distributed gradient aggregation process through the lens of subspace optimization. By formulating the aggregation problem as an objective-aware subspace optimization problem, we derive an efficient weighting scheme for gradients, guided by subspace coefficients. We further introduce subspace momentum to accelerate convergence while maintaining statistical unbiasedness in the aggregation. Our method demonstrates improved performance over the ubiquitous gradient averaging on multiple MLPerf tasks while remaining extremely efficient in both communicational and computational complexity.
Semi-supervised learning (SSL) is a popular solution to alleviate the high annotation cost in medical image classification. As a main branch of SSL, consistency regularization engages in imposing consensus between the predictions of a single sample from different views, termed as Absolute Location consistency (AL-c). However, only AL-c may be insufficient. Just like when diagnosing a case in practice, besides the case itself, the doctor usually refers to certain related trustworthy cases to make more reliable decisions.Therefore, we argue that solely relying on AL-c may ignore the relative differences across samples, which we interpret as relative locations, and only exploit limited information from one perspective. To address this issue, we propose a Sample Consistency Mean Teacher (SCMT) which not only incorporates AL c but also additionally enforces consistency between the samples' relative similarities to its related samples, called Relative Location consistency (RL c). AL c and RL c conduct consistency regularization from two different perspectives, jointly extracting more diverse semantic information for classification. On the other hand, due to the highly similar structures in medical images, the sample distribution could be overly dense in feature space, making their relative locations susceptible to noise. To tackle this problem, we further develop a Sample Scatter Mean Teacher (SSMT) by utilizing contrastive learning to sparsify the sample distribution and obtain robust and effective relative locations. Extensive experiments on different datasets demonstrate the superiority of our method.
Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).