亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the advent of Large Language Models (LLMs) possessing increasingly impressive capabilities, a number of Large Vision-Language Models (LVLMs) have been proposed to augment LLMs with visual inputs. Such models condition generated text on both an input image and a text prompt, enabling a variety of use cases such as visual question answering and multimodal chat. While prior studies have examined the social biases contained in text generated by LLMs, this topic has been relatively unexplored in LVLMs. Examining social biases in LVLMs is particularly challenging due to the confounding contributions of bias induced by information contained across the text and visual modalities. To address this challenging problem, we conduct a large-scale study of text generated by different LVLMs under counterfactual changes to input images. Specifically, we present LVLMs with identical open-ended text prompts while conditioning on images from different counterfactual sets, where each set contains images which are largely identical in their depiction of a common subject (e.g., a doctor), but vary only in terms of intersectional social attributes (e.g., race and gender). We comprehensively evaluate the text produced by different models under this counterfactual generation setting at scale, producing over 57 million responses from popular LVLMs. Our multi-dimensional analysis reveals that social attributes such as race, gender, and physical characteristics depicted in input images can significantly influence the generation of toxic content, competency-associated words, harmful stereotypes, and numerical ratings of depicted individuals. We additionally explore the relationship between social bias in LVLMs and their corresponding LLMs, as well as inference-time strategies to mitigate bias.

相關內容

This paper formalizes connections between stability of polynomials and convergence rates of Markov Chain Monte Carlo (MCMC) algorithms. We prove that if a (multivariate) partition function is nonzero in a region around a real point $\lambda$ then spectral independence holds at $\lambda$. As a consequence, for Holant-type problems (e.g., spin systems) on bounded-degree graphs, we obtain optimal $O(n\log n)$ mixing time bounds for the single-site update Markov chain known as the Glauber dynamics. Our result significantly improves the running time guarantees obtained via the polynomial interpolation method of Barvinok (2017), refined by Patel and Regts (2017). There are a variety of applications of our results. In this paper, we focus on Holant-type (i.e., edge-coloring) problems, including weighted edge covers and weighted even subgraphs. For the weighted edge cover problem (and several natural generalizations) we obtain an $O(n\log{n})$ sampling algorithm on bounded-degree graphs. The even subgraphs problem corresponds to the high-temperature expansion of the ferromagnetic Ising model. We obtain an $O(n\log{n})$ sampling algorithm for the ferromagnetic Ising model with a nonzero external field on bounded-degree graphs, which improves upon the classical result of Jerrum and Sinclair (1993) for this class of graphs. We obtain further applications to antiferromagnetic two-spin models on line graphs, weighted graph homomorphisms, tensor networks, and more.

The emergence of Large Language Models (LLMs) has demonstrated promising progress in solving logical reasoning tasks effectively. Several recent approaches have proposed to change the role of the LLM from the reasoner into a translator between natural language statements and symbolic representations which are then sent to external symbolic solvers to resolve. This paradigm has established the current state-of-the-art result in logical reasoning (i.e., deductive reasoning). However, it remains unclear whether the variance in performance of these approaches stems from the methodologies employed or the specific symbolic solvers utilized. There is a lack of consistent comparison between symbolic solvers and how they influence the overall reported performance. This is important, as each symbolic solver also has its own input symbolic language, presenting varying degrees of challenge in the translation process. To address this gap, we perform experiments on 3 deductive reasoning benchmarks with LLMs augmented with widely used symbolic solvers: Z3, Pyke, and Prover9. The tool-executable rates of symbolic translation generated by different LLMs exhibit a near 50% performance variation. This highlights a significant difference in performance rooted in very basic choices of tools. The almost linear correlation between the executable rate of translations and the accuracy of the outcomes from Prover9 highlight a strong alignment between LLMs ability to translate into Prover9 symbolic language, and the correctness of those translations.

Numerous benchmarks aim to evaluate the capabilities of Large Language Models (LLMs) for causal inference and reasoning. However, many of them can likely be solved through the retrieval of domain knowledge, questioning whether they achieve their purpose. In this review, we present a comprehensive overview of LLM benchmarks for causality. We highlight how recent benchmarks move towards a more thorough definition of causal reasoning by incorporating interventional or counterfactual reasoning. We derive a set of criteria that a useful benchmark or set of benchmarks should aim to satisfy. We hope this work will pave the way towards a general framework for the assessment of causal understanding in LLMs and the design of novel benchmarks.

We present the Differentially Private Blockchain-Based Vertical Federal Learning (DP-BBVFL) algorithm that provides verifiability and privacy guarantees for decentralized applications. DP-BBVFL uses a smart contract to aggregate the feature representations, i.e., the embeddings, from clients transparently. We apply local differential privacy to provide privacy for embeddings stored on a blockchain, hence protecting the original data. We provide the first prototype application of differential privacy with blockchain for vertical federated learning. Our experiments with medical data show that DP-BBVFL achieves high accuracy with a tradeoff in training time due to on-chain aggregation. This innovative fusion of differential privacy and blockchain technology in DP-BBVFL could herald a new era of collaborative and trustworthy machine learning applications across several decentralized application domains.

Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at //github.com/HCPLab-SYSU/Embodied_AI_Paper_List.

In the age of Industry 4.0 and Cyber-Physical Production Systems (CPPSs) vast amounts of potentially valuable data are being generated. Methods from Machine Learning (ML) and Data Mining (DM) have proven to be promising in extracting complex and hidden patterns from the data collected. The knowledge obtained can in turn be used to improve tasks like diagnostics or maintenance planning. However, such data-driven projects, usually performed with the Cross-Industry Standard Process for Data Mining (CRISP-DM), often fail due to the disproportionate amount of time needed for understanding and preparing the data. The application of domain-specific ontologies has demonstrated its advantageousness in a wide variety of Industry 4.0 application scenarios regarding the aforementioned challenges. However, workflows and artifacts from ontology design for CPPSs have not yet been systematically integrated into the CRISP-DM. Accordingly, this contribution intends to present an integrated approach so that data scientists are able to more quickly and reliably gain insights into the CPPS. The result is exemplarily applied to an anomaly detection use case.

Chemical Exchange Saturation Transfer (CEST) MRI demonstrates its capability in significantly enhancing the detection of proteins and metabolites with low concentrations through exchangeable protons. The clinical application of CEST, however, is constrained by its low contrast and low signal-to-noise ratio (SNR) in the acquired data. Denoising, as one of the post-processing stages for CEST data, can effectively improve the accuracy of CEST quantification. In this work, by modeling spatial variant z-spectrums into low-dimensional subspace, we introduce Implicit Regression in Subspace (IRIS), which is an unsupervised denoising algorithm utilizing the excellent property of implicit neural representation for continuous mapping. Experiments conducted on both synthetic and in-vivo data demonstrate that our proposed method surpasses other CEST denoising methods regarding both qualitative and quantitative performance.

Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing, promising energy-efficient and biologically plausible models for complex tasks. This paper weaves together three groundbreaking studies that revolutionize SNN performance through the introduction of heterogeneity in neuron and synapse dynamics. We explore the transformative impact of Heterogeneous Recurrent Spiking Neural Networks (HRSNNs), supported by rigorous analytical frameworks and novel pruning methods like Lyapunov Noise Pruning (LNP). Our findings reveal how heterogeneity not only enhances classification performance but also reduces spiking activity, leading to more efficient and robust networks. By bridging theoretical insights with practical applications, this comprehensive summary highlights the potential of SNNs to outperform traditional neural networks while maintaining lower computational costs. Join us on a journey through the cutting-edge advancements that pave the way for the future of intelligent, energy-efficient neural computing.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司