亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The hazard function represents one of the main quantities of interest in the analysis of survival data. We propose a general approach for modelling the dynamics of the hazard function using systems of autonomous ordinary differential equations (ODEs). This modelling approach can be used to provide qualitative and quantitative analyses of the evolution of the hazard function over time. Our proposal capitalises on the extensive literature of ODEs which, in particular, allow for establishing basic rules or laws on the dynamics of the hazard function via the use of autonomous ODEs. We show how to implement the proposed modelling framework in cases where there is an analytic solution to the system of ODEs or where an ODE solver is required to obtain a numerical solution. We focus on the use of a Bayesian modelling approach, but the proposed methodology can also be coupled with maximum likelihood estimation. A simulation study is presented to illustrate the performance of these models and the interplay of sample size and censoring. Two case studies using real data are presented to illustrate the use of the proposed approach and to highlight the interpretability of the corresponding models. We conclude with a discussion on potential extensions of our work and strategies to include covariates into our framework.

相關內容

We investigate a class of parametric elliptic semilinear partial differential equations of second order with homogeneous essential boundary conditions, where the coefficients and the right-hand side (and hence the solution) may depend on a parameter. This model can be seen as a reaction-diffusion problem with a polynomial nonlinearity in the reaction term. The efficiency of various numerical approximations across the entire parameter space is closely related to the regularity of the solution with respect to the parameter. We show that if the coefficients and the right-hand side are analytic or Gevrey class regular with respect to the parameter, the same type of parametric regularity is valid for the solution. The key ingredient of the proof is the combination of the alternative-to-factorial technique from our previous work [1] with a novel argument for the treatment of the power-type nonlinearity in the reaction term. As an application of this abstract result, we obtain rigorous convergence estimates for numerical integration of semilinear reaction-diffusion problems with random coefficients using Gaussian and Quasi-Monte Carlo quadrature. Our theoretical findings are confirmed in numerical experiments.

We present a reduced basis stochastic Galerkin method for partial differential equations with random inputs. In this method, the reduced basis methodology is integrated into the stochastic Galerkin method, resulting in a significant reduction in the cost of solving the Galerkin system. To reduce the main cost of matrix-vector manipulation involved in our reduced basis stochastic Galerkin approach, the secant method is applied to identify the number of reduced basis functions. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.

We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.

Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed linear reaction-advection-diffusion (RAD) PDE models. We show that the differential algebra approach can always, in theory, be applied to linear RAD models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease structural identifiability. Finally, we show that our approach can also be applied to a class of non-linear PDE models that are linear in the unobserved variables, and conclude by discussing future possibilities and computational cost of performing structural identifiability analysis on more general PDE models in mathematical biology.

The subpower membership problem SMP(A) of a finite algebraic structure A asks whether a given partial function from A^k to A can be interpolated by a term operation of A, or not. While this problem can be EXPTIME-complete in general, Willard asked whether it is always solvable in polynomial time if A is a Mal'tsev algebras. In particular, this includes many important structures studied in abstract algebra, such as groups, quasigroups, rings, Boolean algebras. In this paper we give an affirmative answer to Willard's question for a big class of 2-nilpotent Mal'tsev algebras. We furthermore develop tools that might be essential in answering the question for general nilpotent Mal'tsev algebras in the future.

In this work, we propose an absolute value block $\alpha$-circulant preconditioner for the minimal residual (MINRES) method to solve an all-at-once system arising from the discretization of wave equations. Since the original block $\alpha$-circulant preconditioner shown successful by many recently is non-Hermitian in general, it cannot be directly used as a preconditioner for MINRES. Motivated by the absolute value block circulant preconditioner proposed in [E. McDonald, J. Pestana, and A. Wathen. SIAM J. Sci. Comput., 40(2):A1012-A1033, 2018], we propose an absolute value version of the block $\alpha$-circulant preconditioner. Our proposed preconditioner is the first Hermitian positive definite variant of the block $\alpha$-circulant preconditioner, which fills the gap between block $\alpha$-circulant preconditioning and the field of preconditioned MINRES solver. The matrix-vector multiplication of the preconditioner can be fast implemented via fast Fourier transforms. Theoretically, we show that for properly chosen $\alpha$ the MINRES solver with the proposed preconditioner has a linear convergence rate independent of the matrix size. To the best of our knowledge, this is the first attempt to generalize the original absolute value block circulant preconditioner in the aspects of both theory and performance. Numerical experiments are given to support the effectiveness of our preconditioner, showing that the expected optimal convergence can be achieved.

The convergence of the first order Euler scheme and an approximative variant thereof, along with convergence rates, are established for rough differential equations driven by c\`adl\`ag paths satisfying a suitable criterion, namely the so-called Property (RIE), along time discretizations with vanishing mesh size. This property is then verified for almost all sample paths of Brownian motion, It\^o processes, L\'evy processes and general c\`adl\`ag semimartingales, as well as the driving signals of both mixed and rough stochastic differential equations, relative to various time discretizations. Consequently, we obtain pathwise convergence in p-variation of the Euler--Maruyama scheme for stochastic differential equations driven by these processes.

The nonlinear Poisson-Boltzmann equation (NPBE) is an elliptic partial differential equation used in applications such as protein interactions and biophysical chemistry (among many others). It describes the nonlinear electrostatic potential of charged bodies submerged in an ionic solution. The kinetic presence of the solvent molecules introduces randomness to the shape of a protein, and thus a more accurate model that incorporates these random perturbations of the domain is analyzed to compute the statistics of quantities of interest of the solution. When the parameterization of the random perturbations is high-dimensional, this calculation is intractable as it is subject to the curse of dimensionality. However, if the solution of the NPBE varies analytically with respect to the random parameters, the problem becomes amenable to techniques such as sparse grids and deep neural networks. In this paper, we show analyticity of the solution of the NPBE with respect to analytic perturbations of the domain by using the analytic implicit function theorem and the domain mapping method. Previous works have shown analyticity of solutions to linear elliptic equations but not for nonlinear problems. We further show how to derive \emph{a priori} bounds on the size of the region of analyticity. This method is applied to the trypsin molecule to demonstrate that the convergence rates of the quantity of interest are consistent with the analyticity result. Furthermore, the approach developed here is sufficiently general enough to be applied to other nonlinear problems in uncertainty quantification.

The complexity class Quantum Statistical Zero-Knowledge ($\mathsf{QSZK}$) captures computational difficulties of the time-bounded quantum state testing problem with respect to the trace distance, known as the Quantum State Distinguishability Problem (QSDP) introduced by Watrous (FOCS 2002). However, QSDP is in $\mathsf{QSZK}$ merely within the constant polarizing regime, similar to its classical counterpart shown by Sahai and Vadhan (JACM 2003) due to the polarization lemma (error reduction for SDP). Recently, Berman, Degwekar, Rothblum, and Vasudevan (TCC 2019) extended the $\mathsf{SZK}$ containment for SDP beyond the polarizing regime via the time-bounded distribution testing problems with respect to the triangular discrimination and the Jensen-Shannon divergence. Our work introduces proper quantum analogs for these problems by defining quantum counterparts for triangular discrimination. We investigate whether the quantum analogs behave similarly to their classical counterparts and examine the limitations of existing approaches to polarization regarding quantum distances. These new $\mathsf{QSZK}$-complete problems improve $\mathsf{QSZK}$ containments for QSDP beyond the polarizing regime and establish a simple $\mathsf{QSZK}$-hardness for the quantum entropy difference problem (QEDP) defined by Ben-Aroya, Schwartz, and Ta-Shma (ToC 2010). Furthermore, we prove that QSDP with some exponentially small errors is in $\mathsf{PP}$, while the same problem without error is in $\mathsf{NQP}$.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司