亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pretraining auto-regressive large language models (LLMs) with retrieval demonstrates better perplexity and factual accuracy by leveraging external databases. However, the size of existing pretrained retrieval-augmented LLM is still limited (e.g., Retro has 7.5B parameters), which limits the effectiveness of instruction tuning and zero-shot generalization. In this work, we introduce Retro 48B, the largest LLM pretrained with retrieval before instruction tuning. Specifically, we continue to pretrain the 43B GPT model on additional 100 billion tokens using the Retro augmentation method by retrieving from 1.2 trillion tokens. The obtained foundation model, Retro 48B, largely outperforms the original 43B GPT in terms of perplexity. After instruction tuning on Retro, InstructRetro demonstrates significant improvement over the instruction tuned GPT on zero-shot question answering (QA) tasks. Specifically, the average improvement of InstructRetro is 7% over its GPT counterpart across 8 short-form QA tasks, and 10% over GPT across 4 challenging long-form QA tasks. Surprisingly, we find that one can ablate the encoder from InstructRetro architecture and directly use its decoder backbone, while achieving comparable results. We hypothesize that pretraining with retrieval makes its decoder good at incorporating context for QA. Our results highlights the promising direction to obtain a better GPT decoder for QA through continued pretraining with retrieval before instruction tuning.

相關內容

Recent advancements in multimodal large language models (MLLMs) have achieved significant multimodal generation capabilities, akin to GPT-4. These models predominantly map visual information into language representation space, leveraging the vast knowledge and powerful text generation abilities of LLMs to produce multimodal instruction-following responses. We could term this method as LLMs for Vision because of its employing LLMs for visual-language understanding, yet observe that these MLLMs neglect the potential of harnessing visual knowledge to enhance overall capabilities of LLMs, which could be regraded as Vision Enhancing LLMs. In this paper, we propose an approach called MKS2, aimed at enhancing LLMs through empowering Multimodal Knowledge Storage and Sharing in LLMs. Specifically, we introduce the Modular Visual Memory, a component integrated into the internal blocks of LLMs, designed to store open-world visual information efficiently. Additionally, we present a soft Mixtures-of-Multimodal Experts architecture in LLMs to invoke multimodal knowledge collaboration during generation. Our comprehensive experiments demonstrate that MKS2 substantially augments the reasoning capabilities of LLMs in contexts necessitating physical or commonsense knowledge. It also delivers competitive results on multimodal benchmarks.

Referring image segmentation (RIS) aims to segment a particular region based on a language expression prompt. Existing methods incorporate linguistic features into visual features and obtain multi-modal features for mask decoding. However, these methods may segment the visually salient entity instead of the correct referring region, as the multi-modal features are dominated by the abundant visual context. In this paper, we propose MARIS, a referring image segmentation method that leverages the Segment Anything Model (SAM) and introduces a mutual-aware attention mechanism to enhance the cross-modal fusion via two parallel branches. Specifically, our mutual-aware attention mechanism consists of Vision-Guided Attention and Language-Guided Attention, which bidirectionally model the relationship between visual and linguistic features. Correspondingly, we design a Mask Decoder to enable explicit linguistic guidance for more consistent segmentation with the language expression. To this end, a multi-modal query token is proposed to integrate linguistic information and interact with visual information simultaneously. Extensive experiments on three benchmark datasets show that our method outperforms the state-of-the-art RIS methods. Our code will be publicly available.

The high computational and memory requirements of generative large language models (LLMs) make it challenging to serve them cheaply. This paper aims to reduce the monetary cost for serving LLMs by leveraging preemptible GPU instances on modern clouds, which offer accesses to spare GPUs at a much cheaper price than regular instances but may be preempted by the cloud at any time. Serving LLMs on preemptible instances requires addressing challenges induced by frequent instance preemptions and the necessity of migrating instances to handle these preemptions. This paper presents SpotServe, the first distributed LLM serving system on preemptible instances. Several key techniques in SpotServe realize fast and reliable serving of generative LLMs on cheap preemptible instances. First, SpotServe dynamically adapts the LLM parallelization configuration for dynamic instance availability and fluctuating workload, while balancing the trade-off among the overall throughput, inference latency and monetary costs. Second, to minimize the cost of migrating instances for dynamic reparallelization, the task of migrating instances is formulated as a bipartite graph matching problem, which uses the Kuhn-Munkres algorithm to identify an optimal migration plan that minimizes communications. Finally, to take advantage of the grace period offered by modern clouds, we introduce stateful inference recovery, a new inference mechanism that commits inference progress at a much finer granularity and allows SpotServe to cheaply resume inference upon preemption. We evaluate on real spot instance preemption traces and various popular LLMs and show that SpotServe can reduce the P99 tail latency by 2.4 - 9.1x compared with the best existing LLM serving systems. We also show that SpotServe can leverage the price advantage of preemptive instances, saving 54% monetary cost compared with only using on-demand instances.

We propose Text2Motion, a language-based planning framework enabling robots to solve sequential manipulation tasks that require long-horizon reasoning. Given a natural language instruction, our framework constructs both a task- and motion-level plan that is verified to reach inferred symbolic goals. Text2Motion uses feasibility heuristics encoded in Q-functions of a library of skills to guide task planning with Large Language Models. Whereas previous language-based planners only consider the feasibility of individual skills, Text2Motion actively resolves geometric dependencies spanning skill sequences by performing geometric feasibility planning during its search. We evaluate our method on a suite of problems that require long-horizon reasoning, interpretation of abstract goals, and handling of partial affordance perception. Our experiments show that Text2Motion can solve these challenging problems with a success rate of 82%, while prior state-of-the-art language-based planning methods only achieve 13%. Text2Motion thus provides promising generalization characteristics to semantically diverse sequential manipulation tasks with geometric dependencies between skills.

Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs. This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that cover LLM evaluations on capabilities, alignment, safety, and applicability. We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks. A curated list of related papers has been publicly available at //github.com/tjunlp-lab/Awesome-LLMs-Evaluation-Papers.

State-of-the-art weakly supervised text classification methods, while significantly reduced the required human supervision, still requires the supervision to cover all the classes of interest. This is never easy to meet in practice when human explore new, large corpora without complete pictures. In this paper, we work on a novel yet important problem of weakly supervised open-world text classification, where supervision is only needed for a few examples from a few known classes and the machine should handle both known and unknown classes in test time. General open-world classification has been studied mostly using image classification; however, existing methods typically assume the availability of sufficient known-class supervision and strong unknown-class prior knowledge (e.g., the number and/or data distribution). We propose a novel framework WOT-Class that lifts those strong assumptions. Specifically, it follows an iterative process of (a) clustering text to new classes, (b) mining and ranking indicative words for each class, and (c) merging redundant classes by using the overlapped indicative words as a bridge. Extensive experiments on 7 popular text classification datasets demonstrate that WOT-Class outperforms strong baselines consistently with a large margin, attaining 23.33% greater average absolute macro-F1 over existing approaches across all datasets. Such competent accuracy illuminates the practical potential of further reducing human effort for text classification.

Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

北京阿比特科技有限公司