Recently, Deep reinforcement learning (DRL) models have shown promising results in solving routing problems. However, most DRL solvers are commonly proposed to solve node routing problems, such as the Traveling Salesman Problem (TSP). Meanwhile, there has been limited research on applying neural methods to arc routing problems, such as the Chinese Postman Problem (CPP), since they often feature irregular and complex solution spaces compared to TSP. To fill these gaps, this paper proposes a novel DRL framework to address the CPP with load-dependent costs (CPP-LC) (Corberan et al., 2018), which is a complex arc routing problem with load constraints. The novelty of our method is two-fold. First, we formulate the CPP-LC as a Markov Decision Process (MDP) sequential model. Subsequently, we introduce an autoregressive model based on DRL, namely Arc-DRL, consisting of an encoder and decoder to address the CPP-LC challenge effectively. Such a framework allows the DRL model to work efficiently and scalably to arc routing problems. Furthermore, we propose a new bio-inspired meta-heuristic solution based on Evolutionary Algorithm (EA) for CPP-LC. Extensive experiments show that Arc-DRL outperforms existing meta-heuristic methods such as Iterative Local Search (ILS) and Variable Neighborhood Search (VNS) proposed by (Corberan et al., 2018) on large benchmark datasets for CPP-LC regarding both solution quality and running time; while the EA gives the best solution quality with much more running time. We release our C++ implementations for metaheuristics such as EA, ILS and VNS along with the code for data generation and our generated data at //github.com/HySonLab/Chinese_Postman_Problem
Sequence modeling approaches have shown promising results in robot imitation learning. Recently, diffusion models have been adopted for behavioral cloning in a sequence modeling fashion, benefiting from their exceptional capabilities in modeling complex data distributions. The standard diffusion-based policy iteratively generates action sequences from random noise conditioned on the input states. Nonetheless, the model for diffusion policy can be further improved in terms of visual representations. In this work, we propose Crossway Diffusion, a simple yet effective method to enhance diffusion-based visuomotor policy learning via a carefully designed state decoder and an auxiliary self-supervised learning (SSL) objective. The state decoder reconstructs raw image pixels and other state information from the intermediate representations of the reverse diffusion process. The whole model is jointly optimized by the SSL objective and the original diffusion loss. Our experiments demonstrate the effectiveness of Crossway Diffusion in various simulated and real-world robot tasks, confirming its consistent advantages over the standard diffusion-based policy and substantial improvements over the baselines.
Large Language Models (LLMs) have shown remarkable capabilities in processing both natural and programming languages, which have enabled various applications in software engineering, such as requirement engineering, code generation, and software testing. However, existing code generation benchmarks do not necessarily assess the code understanding performance of LLMs, especially for the subtle inconsistencies that may arise between code and its semantics described in natural language. In this paper, we propose a novel method to systematically assess the code understanding performance of LLMs, particularly focusing on subtle differences between code and its descriptions, by introducing code mutations to existing code generation datasets. Code mutations are small changes that alter the semantics of the original code, creating a mismatch with the natural language description. We apply different types of code mutations, such as operator replacement and statement deletion, to generate inconsistent code-description pairs. We then use these pairs to test the ability of LLMs to correctly detect the inconsistencies. We propose a new LLM testing method, called Mutation-based Consistency Testing (MCT), and conduct a case study on the two popular LLMs, GPT-3.5 and GPT-4, using the state-of-the-art code generation benchmark, HumanEval-X, which consists of six programming languages (Python, C++, Java, Go, JavaScript, and Rust). We compare the performance of the LLMs across different types of code mutations and programming languages and analyze the results. We find that the LLMs show significant variation in their code understanding performance and that they have different strengths and weaknesses depending on the mutation type and language.
Safety is an indispensable requirement for applying reinforcement learning (RL) to real problems. Although there has been a surge of safe RL algorithms proposed in recent years, most existing work typically 1) relies on receiving numeric safety feedback; 2) does not guarantee safety during the learning process; 3) limits the problem to a priori known, deterministic transition dynamics; and/or 4) assume the existence of a known safe policy for any states. Addressing the issues mentioned above, we thus propose Long-term Binaryfeedback Safe RL (LoBiSaRL), a safe RL algorithm for constrained Markov decision processes (CMDPs) with binary safety feedback and an unknown, stochastic state transition function. LoBiSaRL optimizes a policy to maximize rewards while guaranteeing a long-term safety that an agent executes only safe state-action pairs throughout each episode with high probability. Specifically, LoBiSaRL models the binary safety function via a generalized linear model (GLM) and conservatively takes only a safe action at every time step while inferring its effect on future safety under proper assumptions. Our theoretical results show that LoBiSaRL guarantees the long-term safety constraint, with high probability. Finally, our empirical results demonstrate that our algorithm is safer than existing methods without significantly compromising performance in terms of reward.
We study the problem of testing whether the missing values of a potentially high-dimensional dataset are Missing Completely at Random (MCAR). We relax the problem of testing MCAR to the problem of testing the compatibility of a sequence of covariance matrices, motivated by the fact that this procedure is feasible when the dimension grows with the sample size. Tests of compatibility can be used to test the feasibility of positive semi-definite matrix completion problems with noisy observations, and thus our results may be of independent interest. Our first contributions are to define a natural measure of the incompatibility of a sequence of correlation matrices, which can be characterised as the optimal value of a Semi-definite Programming (SDP) problem, and to establish a key duality result allowing its practical computation and interpretation. By studying the concentration properties of the natural plug-in estimator of this measure, we introduce novel hypothesis tests that we prove have power against all distributions with incompatible covariance matrices. The choice of critical values for our tests rely on a new concentration inequality for the Pearson sample correlation matrix, which may be of interest more widely. By considering key examples of missingness structures, we demonstrate that our procedures are minimax rate optimal in certain cases. We further validate our methodology with numerical simulations that provide evidence of validity and power, even when data are heavy tailed.
In multi-goal reinforcement learning with a sparse binary reward, training agents is particularly challenging, due to a lack of successful experiences. To solve this problem, hindsight experience replay (HER) generates successful experiences even from unsuccessful ones. However, generating successful experiences from uniformly sampled ones is not an efficient process. In this paper, the impact of exploiting the property of achieved goals in generating successful experiences is investigated and a novel cluster-based sampling strategy is proposed. The proposed sampling strategy groups episodes with different achieved goals by using a cluster model and samples experiences in the manner of HER to create the training batch. The proposed method is validated by experiments with three robotic control tasks of the OpenAI Gym. The results of experiments demonstrate that the proposed method is substantially sample efficient and achieves better performance than baseline approaches.
Deep learning-based surrogate models have been widely applied in geological carbon storage (GCS) problems to accelerate the prediction of reservoir pressure and CO2 plume migration. Large amounts of data from physics-based numerical simulators are required to train a model to accurately predict the complex physical behaviors associated with this process. In practice, the available training data are always limited in large-scale 3D problems due to the high computational cost. Therefore, we propose to use a multi-fidelity Fourier neural operator (FNO) to solve large-scale GCS problems with more affordable multi-fidelity training datasets. FNO has a desirable grid-invariant property, which simplifies the transfer learning procedure between datasets with different discretization. We first test the model efficacy on a GCS reservoir model being discretized into 110k grid cells. The multi-fidelity model can predict with accuracy comparable to a high-fidelity model trained with the same amount of high-fidelity data with 81% less data generation costs. We further test the generalizability of the multi-fidelity model on a same reservoir model with a finer discretization of 1 million grid cells. This case was made more challenging by employing high-fidelity and low-fidelity datasets generated by different geostatistical models and reservoir simulators. We observe that the multi-fidelity FNO model can predict pressure fields with reasonable accuracy even when the high-fidelity data are extremely limited. The findings of this study can help for better understanding of the transferability of multi-fidelity deep learning surrogate models.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
While deep learning strategies achieve outstanding results in computer vision tasks, one issue remains. The current strategies rely heavily on a huge amount of labeled data. In many real-world problems it is not feasible to create such an amount of labeled training data. Therefore, researchers try to incorporate unlabeled data into the training process to reach equal results with fewer labels. Due to a lot of concurrent research, it is difficult to keep track of recent developments. In this survey we provide an overview of often used techniques and methods in image classification with fewer labels. We compare 21 methods. In our analysis we identify three major trends. 1. State-of-the-art methods are scaleable to real world applications based on their accuracy. 2. The degree of supervision which is needed to achieve comparable results to the usage of all labels is decreasing. 3. All methods share common techniques while only few methods combine these techniques to achieve better performance. Based on all of these three trends we discover future research opportunities.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.