亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We open-source a state-of-the-art 4B-parameter generative model series for Vietnamese, which includes the base pre-trained monolingual model PhoGPT-4B and its chat variant, PhoGPT-4B-Chat. The base model, PhoGPT-4B, with exactly 3.7B parameters, is pre-trained from scratch on a Vietnamese corpus of 102B tokens, with an 8192 context length, employing a vocabulary of 20480 token types. The chat variant, PhoGPT-4B-Chat, is the modeling output obtained by fine-tuning PhoGPT-4B on a dataset of 70K instructional prompts and their responses, along with an additional 290K conversations. In addition, we also demonstrate its superior performance compared to previous open-source models. Our PhoGPT models are available at: //github.com/VinAIResearch/PhoGPT

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 3D · Processing(編程語言) · MoDELS · 樣本 ·
2024 年 5 月 6 日

Text-to-image diffusion models pre-trained on billions of image-text pairs have recently enabled 3D content creation by optimizing a randomly initialized differentiable 3D representation with score distillation. However, the optimization process suffers slow convergence and the resultant 3D models often exhibit two limitations: (a) quality concerns such as missing attributes and distorted shape and texture; (b) extremely low diversity comparing to text-guided image synthesis. In this paper, we show that the conflict between the 3D optimization process and uniform timestep sampling in score distillation is the main reason for these limitations. To resolve this conflict, we propose to prioritize timestep sampling with monotonically non-increasing functions, which aligns the 3D optimization process with the sampling process of diffusion model. Extensive experiments show that our simple redesign significantly improves 3D content creation with faster convergence, better quality and diversity.

In the field of low-light image enhancement, both traditional Retinex methods and advanced deep learning techniques such as Retinexformer have shown distinct advantages and limitations. Traditional Retinex methods, designed to mimic the human eye's perception of brightness and color, decompose images into illumination and reflection components but struggle with noise management and detail preservation under low light conditions. Retinexformer enhances illumination estimation through traditional self-attention mechanisms, but faces challenges with insufficient interpretability and suboptimal enhancement effects. To overcome these limitations, this paper introduces the RetinexMamba architecture. RetinexMamba not only captures the physical intuitiveness of traditional Retinex methods but also integrates the deep learning framework of Retinexformer, leveraging the computational efficiency of State Space Models (SSMs) to enhance processing speed. This architecture features innovative illumination estimators and damage restorer mechanisms that maintain image quality during enhancement. Moreover, RetinexMamba replaces the IG-MSA (Illumination-Guided Multi-Head Attention) in Retinexformer with a Fused-Attention mechanism, improving the model's interpretability. Experimental evaluations on the LOL dataset show that RetinexMamba outperforms existing deep learning approaches based on Retinex theory in both quantitative and qualitative metrics, confirming its effectiveness and superiority in enhancing low-light images.

In this work, we further develop the conformer-based metric generative adversarial network (CMGAN) model for speech enhancement (SE) in the time-frequency (TF) domain. This paper builds on our previous work but takes a more in-depth look by conducting extensive ablation studies on model inputs and architectural design choices. We rigorously tested the generalization ability of the model to unseen noise types and distortions. We have fortified our claims through DNS-MOS measurements and listening tests. Rather than focusing exclusively on the speech denoising task, we extend this work to address the dereverberation and super-resolution tasks. This necessitated exploring various architectural changes, specifically metric discriminator scores and masking techniques. It is essential to highlight that this is among the earliest works that attempted complex TF-domain super-resolution. Our findings show that CMGAN outperforms existing state-of-the-art methods in the three major speech enhancement tasks: denoising, dereverberation, and super-resolution. For example, in the denoising task using the Voice Bank+DEMAND dataset, CMGAN notably exceeded the performance of prior models, attaining a PESQ score of 3.41 and an SSNR of 11.10 dB. Audio samples and CMGAN implementations are available online.

Heterogeneous graphs are ubiquitous to model complex data. There are urgent needs on powerful heterogeneous graph neural networks to effectively support important applications. We identify a potential semantic mixing issue in existing message passing processes, where the representations of the neighbors of a node $v$ are forced to be transformed to the feature space of $v$ for aggregation, though the neighbors are in different types. That is, the semantics in different node types are entangled together into node $v$'s representation. To address the issue, we propose SlotGAT with separate message passing processes in slots, one for each node type, to maintain the representations in their own node-type feature spaces. Moreover, in a slot-based message passing layer, we design an attention mechanism for effective slot-wise message aggregation. Further, we develop a slot attention technique after the last layer of SlotGAT, to learn the importance of different slots in downstream tasks. Our analysis indicates that the slots in SlotGAT can preserve different semantics in various feature spaces. The superiority of SlotGAT is evaluated against 13 baselines on 6 datasets for node classification and link prediction. Our code is at //github.com/scottjiao/SlotGAT_ICML23/.

Because of the recent trends in Deep Neural Networks (DNN) models being memory-bound, inter-operator pipelining for DNN accelerators is emerging as a promising optimization. Inter-operator pipelining reduces costly on-chip global memory and off-chip memory accesses by forwarding the output of a layer as the input of the next layer within the compute array, which is proven to be an effective optimization by previous works. However, the design space of inter-operator pipelining is huge, and the space is not yet fully explored. In particular, identifying the right depth and granularity of pipelining (or no pipelining at all) is significantly dependent on the layer shapes and data volumes of weights and activations, and these are different even within a domain. Moreover, works divide the substrate into large chunks and map one layer onto each chunk, which requires communicating halfway through or through the global buffer. However, for fine-grained inter-operation pipelining, placing the corresponding consumer of the next layer tile close to the producer tile of the current layer is a better way to exploit fine-grained spatial reuse. In order to support variable number of layers (ie the right depth) and support multiple spatial organizations of layers (in accordance with the pipelining granularity) on the substrate, we propose PipeOrgan, a new class of spatial data organization strategy for energy efficient and congestion-free communication between the PEs for various pipeline depth and granularity. PipeOrgan takes advantage of flexible spatial organization and can allocate layers to PEs based on the granularity of pipelining. We also propose changes to the conventional mesh topology to improve the performance of coarse-grained allocation. PipeOrgan achieves 1.95x performance improvement over the state-of-the-art pipelined dataflow on XR-bench workloads.

With the urgent demand for generalized deep models, many pre-trained big models are proposed, such as BERT, ViT, GPT, etc. Inspired by the success of these models in single domains (like computer vision and natural language processing), the multi-modal pre-trained big models have also drawn more and more attention in recent years. In this work, we give a comprehensive survey of these models and hope this paper could provide new insights and helps fresh researchers to track the most cutting-edge works. Specifically, we firstly introduce the background of multi-modal pre-training by reviewing the conventional deep learning, pre-training works in natural language process, computer vision, and speech. Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network architectures, and knowledge enhanced pre-training. After that, we introduce the downstream tasks used for the validation of large-scale MM-PTMs, including generative, classification, and regression tasks. We also give visualization and analysis of the model parameters and results on representative downstream tasks. Finally, we point out possible research directions for this topic that may benefit future works. In addition, we maintain a continuously updated paper list for large-scale pre-trained multi-modal big models: //github.com/wangxiao5791509/MultiModal_BigModels_Survey

In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.

Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

北京阿比特科技有限公司