The Dyck language, which consists of well-balanced sequences of parentheses, is one of the most fundamental context-free languages. The Dyck edit distance quantifies the number of edits (character insertions, deletions, and substitutions) required to make a given parenthesis sequence well-balanced. RNA Folding involves a similar problem, where a closing parenthesis can match an opening parenthesis of the same type irrespective of their ordering. For example, in RNA Folding, both $\tt{()}$ and $\tt{)(}$ are valid matches, whereas the Dyck language only allows $\tt{()}$ as a match. Using fast matrix multiplication, it is possible to compute their exact solutions of both problems in time $O(n^{2.824})$. Whereas combinatorial algorithms would be more desirable, the two problems are known to be at least as hard as Boolean matrix multiplication. In terms of fast approximation algorithms that are combinatorial in nature, both problems admit an $\epsilon n$-additive approximation in $\tilde{O}(\frac{n^2}{\epsilon})$ time. Further, there is a $O(\log n)$-factor approximation algorithm for Dyck edit distance in near-linear time. In this paper, we design a constant-factor approximation algorithm for Dyck edit distance that runs in $O(n^{1.971})$ time. Moreover, we develop a $(1+\epsilon)$-factor approximation algorithm running in $\tilde{O}(\frac{n^2}{\epsilon})$ time, which improves upon the earlier additive approximation. Finally, we design a $(3+\epsilon)$-approximation that takes $\tilde{O}(\frac{nd}{\epsilon})$ time, where $d\ge 1$ is an upper bound on the sought distance. As for RNA folding, for any $s\ge1$, we design a factor-$s$ approximation algorithm that runs in $O(n+(\frac{n}{s})^3)$ time. To the best of our knowledge, this is the first nontrivial approximation algorithm for RNA Folding that can go below the $n^2$ barrier. All our algorithms are combinatorial.
Consider a set $P$ of $n$ points in $\mathbb{R}^d$. In the discrete median line segment problem, the objective is to find a line segment bounded by a pair of points in $P$ such that the sum of the Euclidean distances from $P$ to the line segment is minimized. In the continuous median line segment problem, a real number $\ell>0$ is given, and the goal is to locate a line segment of length $\ell$ in $\mathbb{R}^d$ such that the sum of the Euclidean distances between $P$ and the line segment is minimized. We show how to compute $(1+\epsilon\Delta)$- and $(1+\epsilon)$-approximations to a discrete median line segment in time $O(n\epsilon^{-2d}\log n)$ and $O(n^2\epsilon^{-d})$, respectively, where $\Delta$ is the spread of line segments spanned by pairs of points. While developing our algorithms, by using the principle of pair decomposition, we derive new data structures that allow us to quickly approximate the sum of the distances from a set of points to a given line segment or point. To our knowledge, our utilization of pair decompositions for solving minsum facility location problems is the first of its kind; it is versatile and easily implementable. We prove that it is impossible to construct a continuous median line segment for $n\geq3$ non-collinear points in the plane by using only ruler and compass. In view of this, we present an $O(n^d\epsilon^{-d})$-time algorithm for approximating a continuous median line segment in $\mathbb{R}^d$ within a factor of $1+\epsilon$. The algorithm is based upon generalizing the point-segment pair decomposition from the discrete to the continuous domain. Last but not least, we give an $(1+\epsilon)$-approximation algorithm, whose time complexity is sub-quadratic in $n$, for solving the constrained median line segment problem in $\mathbb{R}^2$ where an endpoint or the slope of the median line segment is given at input.
We study the proximal sampler of Lee, Shen, and Tian (2021) and obtain new convergence guarantees under weaker assumptions than strong log-concavity: namely, our results hold for (1) weakly log-concave targets, and (2) targets satisfying isoperimetric assumptions which allow for non-log-concavity. We demonstrate our results by obtaining new state-of-the-art sampling guarantees for several classes of target distributions. We also strengthen the connection between the proximal sampler and the proximal method in optimization by interpreting the proximal sampler as an entropically regularized Wasserstein proximal method, and the proximal point method as the limit of the proximal sampler with vanishing noise.
The fair $k$-median problem is one of the important clustering problems. The current best approximation ratio is 4.675 for this problem with 1-fair violation, which was proposed by Bercea et al. [APPROX-RANDOM'2019]. As far as we know, there is no available approximation algorithm for the problem without any fair violation. In this paper, we consider the fair $k$-median problem in bounded doubling metrics and general metrics. We provide the first QPTAS for fair $k$-median problem in doubling metrics. Based on the split-tree decomposition of doubling metrics, we present a dynamic programming process to find the candidate centers, and apply min-cost max-flow method to deal with the assignment of clients. Especially, for overcoming the difficulties caused by the fair constraints, we construct an auxiliary graph and use minimum weighted perfect matching to get part of the cost. For the fair $k$-median problem in general metrics, we present an approximation algorithm with ratio $O(\log k)$, which is based on the embedding of given space into tree metrics, and the dynamic programming method. Our two approximation algorithms for the fair $k$-median problem are the first results for the corresponding problems without any fair violation, respectively.
In the Strip Packing problem (SP), we are given a vertical half-strip $[0,W]\times[0,\infty)$ and a set of $n$ axis-aligned rectangles of width at most $W$. The goal is to find a non-overlapping packing of all rectangles into the strip such that the height of the packing is minimized. A well-studied and frequently used practical constraint is to allow only those packings that are guillotine separable, i.e., every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge axis-parallel cuts (guillotine cuts) that do not intersect any item of the solution. In this paper, we study approximation algorithms for the Guillotine Strip Packing problem (GSP), i.e., the Strip Packing problem where we require additionally that the packing needs to be guillotine separable. This problem generalizes the classical Bin Packing problem and also makespan minimization on identical machines, and thus it is already strongly NP-hard. Moreover, due to a reduction from the Partition problem, it is NP-hard to obtain a polynomial-time $(3/2-\varepsilon)$-approximation algorithm for GSP for any $\varepsilon>0$ (exactly as Strip Packing). We provide a matching polynomial time $(3/2+\varepsilon)$-approximation algorithm for GSP. Furthermore, we present a pseudo-polynomial time $(1+\varepsilon)$-approximation algorithm for GSP. This is surprising as it is NP-hard to obtain a $(5/4-\varepsilon)$-approximation algorithm for (general) Strip Packing in pseudo-polynomial time. Thus, our results essentially settle the approximability of GSP for both the polynomial and the pseudo-polynomial settings.
Assume that we observe i.i.d.~points lying close to some unknown $d$-dimensional $\mathcal{C}^k$ submanifold $M$ in a possibly high-dimensional space. We study the problem of reconstructing the probability distribution generating the sample. After remarking that this problem is degenerate for a large class of standard losses ($L_p$, Hellinger, total variation, etc.), we focus on the Wasserstein loss, for which we build an estimator, based on kernel density estimation, whose rate of convergence depends on $d$ and the regularity $s\leq k-1$ of the underlying density, but not on the ambient dimension. In particular, we show that the estimator is minimax and matches previous rates in the literature in the case where the manifold $M$ is a $d$-dimensional cube. The related problem of the estimation of the volume measure of $M$ for the Wasserstein loss is also considered, for which a minimax estimator is exhibited.
We give the first polynomial-time, polynomial-sample, differentially private estimator for the mean and covariance of an arbitrary Gaussian distribution $\mathcal{N}(\mu,\Sigma)$ in $\mathbb{R}^d$. All previous estimators are either nonconstructive, with unbounded running time, or require the user to specify a priori bounds on the parameters $\mu$ and $\Sigma$. The primary new technical tool in our algorithm is a new differentially private preconditioner that takes samples from an arbitrary Gaussian $\mathcal{N}(0,\Sigma)$ and returns a matrix $A$ such that $A \Sigma A^T$ has constant condition number.
We consider classes of objective functions of cardinality constrained maximization problems for which the greedy algorithm guarantees a constant approximation. We propose the new class of $\gamma$-$\alpha$-augmentable functions and prove that it encompasses several important subclasses, such as functions of bounded submodularity ratio, $\alpha$-augmentable functions, and weighted rank functions of an independence system of bounded rank quotient - as well as additional objective functions for which the greedy algorithm yields an approximation. For this general class of functions, we show a tight bound of $\frac{\alpha}{\gamma}\cdot\frac{\mathrm{e}^\alpha}{\mathrm{e}^\alpha-1}$ on the approximation ratio of the greedy algorithm that tightly interpolates between bounds from the literature for functions of bounded submodularity ratio and for $\alpha$-augmentable functions. In paritcular, as a by-product, we close a gap left in [Math.Prog., 2020] by obtaining a tight lower bound for $\alpha$-augmentable functions for all $\alpha\geq1$. For weighted rank functions of independence systems, our tight bound becomes $\frac{\alpha}{\gamma}$, which recovers the known bound of $1/q$ for independence systems of rank quotient at least $q$.
The availability of large microarray data has led to a growing interest in biclustering methods in the past decade. Several algorithms have been proposed to identify subsets of genes and conditions according to different similarity measures and under varying constraints. In this paper we focus on the exclusive row biclustering problem for gene expression data sets, in which each row can only be a member of a single bicluster while columns can participate in multiple ones. This type of biclustering may be adequate, for example, for clustering groups of cancer patients where each patient (row) is expected to be carrying only a single type of cancer, while each cancer type is associated with multiple (and possibly overlapping) genes (columns). We present a novel method to identify these exclusive row biclusters through a combination of existing biclustering algorithms and combinatorial auction techniques. We devise an approach for tuning the threshold for our algorithm based on comparison to a null model in the spirit of the Gap statistic approach. We demonstrate our approach on both synthetic and real-world gene expression data and show its power in identifying large span non-overlapping rows sub matrices, while considering their unique nature. The Gap statistic approach succeeds in identifying appropriate thresholds in all our examples.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.