Finding minimum dominating set and maximum independent set for graphs in the classical online setup are notorious due to their disastrous $\Omega(n)$ lower bound of the competitive ratio that even holds for interval graphs, where $n$ is the number of vertices. In this paper, inspired by Newton number, first, we introduce the independent kissing number $\zeta$ of a graph. We prove that the well known online greedy algorithm for dominating set achieves optimal competitive ratio $\zeta$ for any graph. We show that the same greedy algorithm achieves optimal competitive ratio $\zeta$ for online maximum independent set of a class of graphs with independent kissing number $\zeta$. For minimum connected dominating set problem, we prove that online greedy algorithm achieves an asymptotic competitive ratio of $2(\zeta-1)$, whereas for a family of translated convex objects the lower bound is $\frac{2\zeta-1}{3}$. Finally, we study the value of $\zeta$ for some specific families of geometric objects: fixed and arbitrary oriented unit hyper-cubes in $I\!\!R^d$, congruent balls in $I\!\!R^3$, fixed oriented unit triangles, fixed and arbitrary oriented regular polygons in $I\!\!R^2$. For each of these families, we also present lower bounds of the minimum connected dominating set problem.
We investigate two fundamental questions intersecting coding theory and combinatorial geometry, with emphasis on their connections. These are the problem of computing the asymptotic density of MRD codes in the rank metric, and the Critical Problem for combinatorial geometries by Crapo and Rota. Using methods from semifield theory, we derive two lower bounds for the density function of full-rank, square MRD codes. The first bound is sharp when the matrix size is a prime number and the underlying field is sufficiently large, while the second bound applies to the binary field. We then take a new look at the Critical Problem for combinatorial geometries, approaching it from a qualitative, often asymptotic, viewpoint. We illustrate the connection between this very classical problem and that of computing the asymptotic density of MRD codes. Finally, we study the asymptotic density of some special families of codes in the rank metric, including the symmetric, alternating and Hermitian ones. In particular, we show that the optimal codes in these three contexts are sparse.
We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error $1-r/f$ on the spectral interval of $A$. By minimizing this upper bound over all interpolation points, we obtain a new, simple and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant $r$. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating $r(A)$, where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for $r$ following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of $r$ leading to a small error, even in presence of finite precision arithmetic.
For two given nonnegative integers $h$ and $k$, an $L(h,k)$-edge labeling of a graph $G$ is the assignment of labels $\{0,1, \cdots, n\}$ to the edges so that two edges having a common vertex are labeled with difference at least $h$ and two edges not having any common vertex but having a common edge connecting them are labeled with difference at least $k$. The span $\lambda'_{h,k}{(G)}$ is the minimum $n$ such that $G$ admits an $L(h,k)$-edge labeling. Here our main focus is on finding $\lambda'_{1,2}{(G)}$ for $L(1,2)$-edge labeling of infinite regular hexagonal ($T_3$), square ($T_4$), triangular ($T_6$) and octagonal ($T_8$) grids. It was known that $7 \leq \lambda'_{1,2}{(T_3)} \leq 8$, $10 \leq \lambda'_{1,2}{(T_4)} \leq 11$, $16 \leq \lambda'_{1,2}{(T_6)} \leq 20$ and $25 \leq \lambda'_{1,2}{(T_8)} \leq 28$. Here we settle two long standing open questions i.e. $\lambda'_{1,2}{(T_3)}$ and $\lambda'_{1,2}{(T_4)}$. We show $\lambda'_{1,2}{(T_3)} =7$, $\lambda'_{1,2}{(T_4)}= 11$. We also improve the bound for $T_6$ and $T_8$ and prove $\lambda'_{1,2}{(T_6)} \geq 18$, $ \lambda'_{1,2}{(T_8)} \geq 26$.
Positive-unlabeled learning (PU learning) is known as a special case of semi-supervised binary classification where only a fraction of positive examples are labeled. The challenge is then to find the correct classifier despite this lack of information. Recently, new methodologies have been introduced to address the case where the probability of being labeled may depend on the covariates. In this paper, we are interested in establishing risk bounds for PU learning under this general assumption. In addition, we quantify the impact of label noise on PU learning compared to standard classification setting. Finally, we provide a lower bound on minimax risk proving that the upper bound is almost optimal.
We prove new lower bounds for suitable competitive ratio measures of two relaxed online packing problems: online removable multiple knapsack, and a recently introduced online minimum peak appointment scheduling problem. The high level objective in both problems is to pack arriving items of sizes at most 1 into bins of capacity 1 as efficiently as possible, but the exact formalizations differ. In the appointment scheduling problem, every item has to be assigned to a position, which can be seen as a time interval during a workday of length 1. That is, items are not assigned to bins, but only once all the items are processed, the optimal number of bins subject to chosen positions is determined, and this is the cost of the online algorithm. On the other hand, in the removable knapsack problem there is a fixed number of bins, and the goal of packing items, which consists in choosing a particular bin for every packed item (and nothing else), is to pack as valuable a subset as possible. In this last problem it is possible to reject items, that is, deliberately not pack them, as well as to remove packed items at any later point in time, which adds flexibility to the problem.
A strict bramble of a graph $G$ is a collection of pairwise-intersecting connected subgraphs of $G.$ The order of a strict bramble ${\cal B}$ is the minimum size of a set of vertices intersecting all sets of ${\cal B}.$ The strict bramble number of $G,$ denoted by ${\sf sbn}(G),$ is the maximum order of a strict bramble in $G.$ The strict bramble number of $G$ can be seen as a way to extend the notion of acyclicity, departing from the fact that (non-empty) acyclic graphs are exactly the graphs where every strict bramble has order one. We initiate the study of this graph parameter by providing three alternative definitions, each revealing different structural characteristics. The first is a min-max theorem asserting that ${\sf sbn}(G)$ is equal to the minimum $k$ for which $G$ is a minor of the lexicographic product of a tree and a clique on $k$ vertices (also known as the lexicographic tree product number). The second characterization is in terms of a new variant of a tree decomposition called lenient tree decomposition. We prove that ${\sf sbn}(G)$ is equal to the minimum $k$ for which there exists a lenient tree decomposition of $G$ of width at most $k.$ The third characterization is in terms of extremal graphs. For this, we define, for each $k,$ the concept of a $k$-domino-tree and we prove that every edge-maximal graph of strict bramble number at most $k$ is a $k$-domino-tree. We also identify three graphs that constitute the minor-obstruction set of the class of graphs with strict bramble number at most two. We complete our results by proving that, given some $G$ and $k,$ deciding whether ${\sf sbn}(G) \leq k$ is an ${\sf NP}$-complete problem.
We study the following two fixed-cardinality optimization problems (a maximization and a minimization variant). For a fixed $\alpha$ between zero and one we are given a graph and two numbers $k \in \mathbb{N}$ and $t \in \mathbb{Q}$. The task is to find a vertex subset $S$ of exactly $k$ vertices that has value at least (resp. at most for minimization) $t$. Here, the value of a vertex set computes as $\alpha$ times the number of edges with exactly one endpoint in $S$ plus $1-\alpha$ times the number of edges with both endpoints in $S$. These two problems generalize many prominent graph problems, such as Densest $k$-Subgraph, Sparsest $k$-Subgraph, Partial Vertex Cover, and Max ($k$,$n-k$)-Cut. In this work, we complete the picture of their parameterized complexity on several types of sparse graphs that are described by structural parameters. In particular, we provide kernelization algorithms and kernel lower bounds for these problems. A somewhat surprising consequence of our kernelizations is that Partial Vertex Cover and Max $(k,n-k)$-Cut not only behave in the same way but that the kernels for both problems can be obtained by the same algorithms.
A connected dominating set is a widely adopted model for the virtual backbone of a wireless sensor network. In this paper, we design an evolutionary algorithm for the minimum connected dominating set problem (MinCDS), whose performance is theoretically guaranteed in terms of both computation time and approximation ratio. Given a connected graph $G=(V,E)$, a connected dominating set (CDS) is a subset $C\subseteq V$ such that every vertex in $V\setminus C$ has a neighbor in $C$, and the subgraph of $G$ induced by $C$ is connected. The goal of MinCDS is to find a CDS of $G$ with the minimum cardinality. We show that our evolutionary algorithm can find a CDS in expected $O(n^3)$ time which approximates the optimal value within factor $(2+\ln\Delta)$, where $n$ and $\Delta$ are the number of vertices and the maximum degree of graph $G$, respectively.
We consider the problem of computing an $(s,d)$-hypernetwork in an acyclic F-hypergraph. This is a fundamental computational problem arising in directed hypergraphs, and is a foundational step in tackling problems of reachability and redundancy. This problem was previously explored in the context of general directed hypergraphs (containing cycles), where it is NP-hard, and acyclic B-hypergraphs, where a linear time algorithm can be achieved. In a surprising contrast, we find that for acyclic F-hypergraphs the problem is NP-hard, which also implies the problem is hard in BF-hypergraphs. This is a striking complexity boundary given that F-hypergraphs and B-hypergraphs would at first seem to be symmetrical to one another. We provide the proof of complexity and explain why there is a fundamental asymmetry between the two classes of directed hypergraphs.
We study the problem of generating a hyperplane tessellation of an arbitrary set $T$ in $\mathbb{R}^n$, ensuring that the Euclidean distance between any two points corresponds to the fraction of hyperplanes separating them up to a pre-specified error $\delta$. We focus on random gaussian tessellations with uniformly distributed shifts and derive sharp bounds on the number of hyperplanes $m$ that are required. Surprisingly, our lower estimates falsify the conjecture that $m\sim \ell_*^2(T)/\delta^2$, where $\ell_*^2(T)$ is the gaussian width of $T$, is optimal.