亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models exhibit enhanced zero-shot performance on various tasks when fine-tuned with instruction-following data. Multimodal instruction-following models extend these capabilities by integrating both text and images. However, existing models such as MiniGPT-4 face challenges in maintaining dialogue coherence in scenarios involving multiple images. A primary reason is the lack of a specialized dataset for this critical application. To bridge these gaps, we present SparklesChat, a multimodal instruction-following model for open-ended dialogues across multiple images. To support the training, we introduce SparklesDialogue, the first machine-generated dialogue dataset tailored for word-level interleaved multi-image and text interactions. Furthermore, we construct SparklesEval, a GPT-assisted benchmark for quantitatively assessing a model's conversational competence across multiple images and dialogue turns. Our experiments validate the effectiveness of SparklesChat in understanding and reasoning across multiple images and dialogue turns. Specifically, SparklesChat outperformed MiniGPT-4 on established vision-and-language benchmarks, including the BISON binary image selection task and the NLVR2 visual reasoning task. Moreover, SparklesChat scored 8.56 out of 10 on SparklesEval, substantially exceeding MiniGPT-4's score of 3.91 and nearing GPT-4's score of 9.26. Qualitative evaluations further demonstrate SparklesChat's generality in handling real-world applications. All resources are available at //github.com/HYPJUDY/Sparkles.

相關內容

In recent times, large language models (LLMs) have shown impressive performance on various document-level tasks such as document classification, summarization, and question-answering. However, research on understanding their capabilities on the task of self-contradictions in long documents has been very limited. In this work, we introduce ContraDoc, the first human-annotated dataset to study self-contradictions in long documents across multiple domains, varying document lengths, self-contradictions types, and scope. We then analyze the current capabilities of four state-of-the-art open-source and commercially available LLMs: GPT3.5, GPT4, PaLM2, and LLaMAv2 on this dataset. While GPT4 performs the best and can outperform humans on this task, we find that it is still unreliable and struggles with self-contradictions that require more nuance and context. We release the dataset and all the code associated with the experiments.

Encoder-decoder transformer models have achieved great success on various vision-language (VL) tasks, but they suffer from high inference latency. Typically, the decoder takes up most of the latency because of the auto-regressive decoding. To accelerate the inference, we propose an approach of performing Dynamic Early Exit on Decoder (DEED). We build a multi-exit encoder-decoder transformer model which is trained with deep supervision so that each of its decoder layers is capable of generating plausible predictions. In addition, we leverage simple yet practical techniques, including shared generation head and adaptation modules, to keep accuracy when exiting at shallow decoder layers. Based on the multi-exit model, we perform step-level dynamic early exit during inference, where the model may decide to use fewer decoder layers based on its confidence of the current layer at each individual decoding step. Considering different number of decoder layers may be used at different decoding steps, we compute deeper-layer decoder features of previous decoding steps just-in-time, which ensures the features from different decoding steps are semantically aligned. We evaluate our approach with two state-of-the-art encoder-decoder transformer models on various VL tasks. We show our approach can reduce overall inference latency by 30%-60% with comparable or even higher accuracy compared to baselines.

Recent achievements in language models have showcased their extraordinary capabilities in bridging visual information with semantic language understanding. This leads us to a novel question: can language models connect textual semantics with IoT sensory signals to perform recognition tasks, e.g., Human Activity Recognition (HAR)? If so, an intelligent HAR system with human-like cognition can be built, capable of adapting to new environments and unseen categories. This paper explores its feasibility with an innovative approach, IoT-sEnsors-language alignmEnt pre-Training (TENT), which jointly aligns textual embeddings with IoT sensor signals, including camera video, LiDAR, and mmWave. Through the IoT-language contrastive learning, we derive a unified semantic feature space that aligns multi-modal features with language embeddings, so that the IoT data corresponds to specific words that describe the IoT data. To enhance the connection between textual categories and their IoT data, we propose supplementary descriptions and learnable prompts that bring more semantic information into the joint feature space. TENT can not only recognize actions that have been seen but also ``guess'' the unseen action by the closest textual words from the feature space. We demonstrate TENT achieves state-of-the-art performance on zero-shot HAR tasks using different modalities, improving the best vision-language models by over 12%.

The assessment of advanced generative large language models (LLMs) poses a significant challenge, given their heightened complexity in recent developments. Furthermore, evaluating the performance of LLM-based applications in various industries, as indicated by Key Performance Indicators (KPIs), is a complex undertaking. This task necessitates a profound understanding of industry use cases and the anticipated system behavior. Within the context of the automotive industry, existing evaluation metrics prove inadequate for assessing in-car conversational question answering (ConvQA) systems. The unique demands of these systems, where answers may relate to driver or car safety and are confined within the car domain, highlight the limitations of current metrics. To address these challenges, this paper introduces a set of KPIs tailored for evaluating the performance of in-car ConvQA systems, along with datasets specifically designed for these KPIs. A preliminary and comprehensive empirical evaluation substantiates the efficacy of our proposed approach. Furthermore, we investigate the impact of employing varied personas in prompts and found that it enhances the model's capacity to simulate diverse viewpoints in assessments, mirroring how individuals with different backgrounds perceive a topic.

Transparent objects are encountered frequently in our daily lives, yet recognizing them poses challenges for conventional vision sensors due to their unique material properties, not being well perceived from RGB or depth cameras. Overcoming this limitation, thermal infrared cameras have emerged as a solution, offering improved visibility and shape information for transparent objects. In this paper, we present TRansPose, the first large-scale multispectral dataset that combines stereo RGB-D, thermal infrared (TIR) images, and object poses to promote transparent object research. The dataset includes 99 transparent objects, encompassing 43 household items, 27 recyclable trashes, 29 chemical laboratory equivalents, and 12 non-transparent objects. It comprises a vast collection of 333,819 images and 4,000,056 annotations, providing instance-level segmentation masks, ground-truth poses, and completed depth information. The data was acquired using a FLIR A65 thermal infrared (TIR) camera, two Intel RealSense L515 RGB-D cameras, and a Franka Emika Panda robot manipulator. Spanning 87 sequences, TRansPose covers various challenging real-life scenarios, including objects filled with water, diverse lighting conditions, heavy clutter, non-transparent or translucent containers, objects in plastic bags, and multi-stacked objects. TRansPose dataset can be accessed from the following link: //sites.google.com/view/transpose-dataset

Pre-trained vision-language models (VLMs) have achieved promising success in many fields, especially with prompt learning paradigm. In this work, we propose GIP-COL (Graph-Injected Soft Prompting for COmpositional Learning) to better explore the compositional zero-shot learning (CZSL) ability of VLMs within the prompt-based learning framework. The soft prompt in GIPCOL is structured and consists of the prefix learnable vectors, attribute label and object label. In addition, the attribute and object labels in the soft prompt are designated as nodes in a compositional graph. The compositional graph is constructed based on the compositional structure of the objects and attributes extracted from the training data and consequently feeds the updated concept representation into the soft prompt to capture this compositional structure for a better prompting for CZSL. With the new prompting strategy, GIPCOL achieves state-of-the-art AUC results on all three CZSL benchmarks, including MIT-States, UT-Zappos, and C-GQA datasets in both closed and open settings compared to previous non-CLIP as well as CLIP-based methods. We analyze when and why GIPCOL operates well given the CLIP backbone and its training data limitations, and our findings shed light on designing more effective prompts for CZSL

Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: //github.com/apexrl/Diff4RLSurvey .

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

北京阿比特科技有限公司