亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weakly supervised temporal action localization aims at learning the instance-level action pattern from the video-level labels, where a significant challenge is action-context confusion. To overcome this challenge, one recent work builds an action-click supervision framework. It requires similar annotation costs but can steadily improve the localization performance when compared to the conventional weakly supervised methods. In this paper, by revealing that the performance bottleneck of the existing approaches mainly comes from the background errors, we find that a stronger action localizer can be trained with labels on the background video frames rather than those on the action frames. To this end, we convert the action-click supervision to the background-click supervision and develop a novel method, called BackTAL. Specifically, BackTAL implements two-fold modeling on the background video frames, i.e. the position modeling and the feature modeling. In position modeling, we not only conduct supervised learning on the annotated video frames but also design a score separation module to enlarge the score differences between the potential action frames and backgrounds. In feature modeling, we propose an affinity module to measure frame-specific similarities among neighboring frames and dynamically attend to informative neighbors when calculating temporal convolution. Extensive experiments on three benchmarks are conducted, which demonstrate the high performance of the established BackTAL and the rationality of the proposed background-click supervision. Code is available at //github.com/VividLe/BackTAL.

相關內容

Efficiency of gradient propagation in intermediate layers of convolutional neural networks is of key importance for super-resolution task. To this end, we propose a deep architecture for single image super-resolution (SISR), which is built using efficient convolutional units we refer to as mixed-dense connection blocks (MDCB). The design of MDCB combines the strengths of both residual and dense connection strategies, while overcoming their limitations. To enable super-resolution for multiple factors, we propose a scale-recurrent framework which reutilizes the filters learnt for lower scale factors recursively for higher factors. This leads to improved performance and promotes parametric efficiency for higher factors. We train two versions of our network to enhance complementary image qualities using different loss configurations. We further employ our network for video super-resolution task, where our network learns to aggregate information from multiple frames and maintain spatio-temporal consistency. The proposed networks lead to qualitative and quantitative improvements over state-of-the-art techniques on image and video super-resolution benchmarks.

Applying an image processing algorithm independently to each video frame often leads to temporal inconsistency in the resulting video. To address this issue, we present a novel and general approach for blind video temporal consistency. Our method is only trained on a pair of original and processed videos directly instead of a large dataset. Unlike most previous methods that enforce temporal consistency with optical flow, we show that temporal consistency can be achieved by training a convolutional neural network on a video with Deep Video Prior (DVP). Moreover, a carefully designed iteratively reweighted training strategy is proposed to address the challenging multimodal inconsistency problem. We demonstrate the effectiveness of our approach on 7 computer vision tasks on videos. Extensive quantitative and perceptual experiments show that our approach obtains superior performance than state-of-the-art methods on blind video temporal consistency. We further extend DVP to video propagation and demonstrate its effectiveness in propagating three different types of information (color, artistic style, and object segmentation). A progressive propagation strategy with pseudo labels is also proposed to enhance DVP's performance on video propagation. Our source codes are publicly available at //github.com/ChenyangLEI/deep-video-prior.

Recently, transformer-based image segmentation methods have achieved notable success against previous solutions. While for video domains, how to effectively model temporal context with the attention of object instances across frames remains an open problem. In this paper, we propose an online video instance segmentation framework with a novel instance-aware temporal fusion method. We first leverages the representation, i.e., a latent code in the global context (instance code) and CNN feature maps to represent instance- and pixel-level features. Based on this representation, we introduce a cropping-free temporal fusion approach to model the temporal consistency between video frames. Specifically, we encode global instance-specific information in the instance code and build up inter-frame contextual fusion with hybrid attentions between the instance codes and CNN feature maps. Inter-frame consistency between the instance codes are further enforced with order constraints. By leveraging the learned hybrid temporal consistency, we are able to directly retrieve and maintain instance identities across frames, eliminating the complicated frame-wise instance matching in prior methods. Extensive experiments have been conducted on popular VIS datasets, i.e. Youtube-VIS-19/21. Our model achieves the best performance among all online VIS methods. Notably, our model also eclipses all offline methods when using the ResNet-50 backbone.

Real-world videos contain many complex actions with inherent relationships between action classes. In this work, we propose an attention-based architecture that models these action relationships for the task of temporal action localization in untrimmed videos. As opposed to previous works that leverage video-level co-occurrence of actions, we distinguish the relationships between actions that occur at the same time-step and actions that occur at different time-steps (i.e. those which precede or follow each other). We define these distinct relationships as action dependencies. We propose to improve action localization performance by modeling these action dependencies in a novel attention-based Multi-Label Action Dependency (MLAD)layer. The MLAD layer consists of two branches: a Co-occurrence Dependency Branch and a Temporal Dependency Branch to model co-occurrence action dependencies and temporal action dependencies, respectively. We observe that existing metrics used for multi-label classification do not explicitly measure how well action dependencies are modeled, therefore, we propose novel metrics that consider both co-occurrence and temporal dependencies between action classes. Through empirical evaluation and extensive analysis, we show improved performance over state-of-the-art methods on multi-label action localization benchmarks(MultiTHUMOS and Charades) in terms of f-mAP and our proposed metric.

Temporal relational modeling in video is essential for human action understanding, such as action recognition and action segmentation. Although Graph Convolution Networks (GCNs) have shown promising advantages in relation reasoning on many tasks, it is still a challenge to apply graph convolution networks on long video sequences effectively. The main reason is that large number of nodes (i.e., video frames) makes GCNs hard to capture and model temporal relations in videos. To tackle this problem, in this paper, we introduce an effective GCN module, Dilated Temporal Graph Reasoning Module (DTGRM), designed to model temporal relations and dependencies between video frames at various time spans. In particular, we capture and model temporal relations via constructing multi-level dilated temporal graphs where the nodes represent frames from different moments in video. Moreover, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is proposed to encourage the dilated temporal graph reasoning module to find and correct wrong temporal relations in videos. Our DTGRM model outperforms state-of-the-art action segmentation models on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset. The code is available at //github.com/redwang/DTGRM.

We address the problem of retrieving a specific moment from an untrimmed video by natural language. It is a challenging problem because a target moment may take place in the context of other temporal moments in the untrimmed video. Existing methods cannot tackle this challenge well since they do not fully consider the temporal contexts between temporal moments. In this paper, we model the temporal context between video moments by a set of predefined two-dimensional maps under different temporal scales. For each map, one dimension indicates the starting time of a moment and the other indicates the duration. These 2D temporal maps can cover diverse video moments with different lengths, while representing their adjacent contexts at different temporal scales. Based on the 2D temporal maps, we propose a Multi-Scale Temporal Adjacent Network (MS-2D-TAN), a single-shot framework for moment localization. It is capable of encoding the adjacent temporal contexts at each scale, while learning discriminative features for matching video moments with referring expressions. We evaluate the proposed MS-2D-TAN on three challenging benchmarks, i.e., Charades-STA, ActivityNet Captions, and TACoS, where our MS-2D-TAN outperforms the state of the art.

Is it possible to guess human action from dialogue alone? In this work we investigate the link between spoken words and actions in movies. We note that movie screenplays describe actions, as well as contain the speech of characters and hence can be used to learn this correlation with no additional supervision. We train a BERT-based Speech2Action classifier on over a thousand movie screenplays, to predict action labels from transcribed speech segments. We then apply this model to the speech segments of a large unlabelled movie corpus (188M speech segments from 288K movies). Using the predictions of this model, we obtain weak action labels for over 800K video clips. By training on these video clips, we demonstrate superior action recognition performance on standard action recognition benchmarks, without using a single manually labelled action example.

Most state-of-the-art action localization systems process each action proposal individually, without explicitly exploiting their relations during learning. However, the relations between proposals actually play an important role in action localization, since a meaningful action always consists of multiple proposals in a video. In this paper, we propose to exploit the proposal-proposal relations using Graph Convolutional Networks (GCNs). First, we construct an action proposal graph, where each proposal is represented as a node and their relations between two proposals as an edge. Here, we use two types of relations, one for capturing the context information for each proposal and the other one for characterizing the correlations between distinct actions. Then we apply the GCNs over the graph to model the relations among different proposals and learn powerful representations for the action classification and localization. Experimental results show that our approach significantly outperforms the state-of-the-art on THUMOS14 (49.1% versus 42.8%). Moreover, augmentation experiments on ActivityNet also verify the efficacy of modeling action proposal relationships. Codes are available at //github.com/Alvin-Zeng/PGCN.

We study the use of the Wave-U-Net architecture for speech enhancement, a model introduced by Stoller et al for the separation of music vocals and accompaniment. This end-to-end learning method for audio source separation operates directly in the time domain, permitting the integrated modelling of phase information and being able to take large temporal contexts into account. Our experiments show that the proposed method improves several metrics, namely PESQ, CSIG, CBAK, COVL and SSNR, over the state-of-the-art with respect to the speech enhancement task on the Voice Bank corpus (VCTK) dataset. We find that a reduced number of hidden layers is sufficient for speech enhancement in comparison to the original system designed for singing voice separation in music. We see this initial result as an encouraging signal to further explore speech enhancement in the time-domain, both as an end in itself and as a pre-processing step to speech recognition systems.

We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to these existing approaches, while also supporting weaker supervision scenarios. Importantly, it can be trained purely from 2D images, without ground-truth pose annotations, and with a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach on synthetic data in various settings, showing that (i) it learns to disentangle shape from pose; (ii) using shading in the loss improves performance; (iii) our model is comparable or superior to state-of-the-art voxel-based approaches on quantitative metrics, while producing results that are visually more pleasing; (iv) it still performs well when given supervision weaker than in prior works.

北京阿比特科技有限公司