With the evolution of the fifth-generation (5G) wireless network, smart technology based on the Internet of Things (IoT) has become increasingly popular. As a crucial component of smart technology, IoT systems for service delivery often face concept drift issues in network data stream analytics due to dynamic IoT environments, resulting in performance degradation. In this article, we propose a drift-adaptive framework called Adaptive Exponentially Weighted Average Ensemble (AEWAE) consisting of three stages: IoT data preprocessing, base model learning, and online ensembling. It is a data stream analytics framework that integrates dynamic adjustments of ensemble methods to tackle various scenarios. Experimental results on two public IoT datasets demonstrate that our proposed framework outperforms state-of-the-art methods, achieving high accuracy and efficiency in IoT data stream analytics.
This paper proposes Shoggoth, an efficient edge-cloud collaborative architecture, for boosting inference performance on real-time video of changing scenes. Shoggoth uses online knowledge distillation to improve the accuracy of models suffering from data drift and offloads the labeling process to the cloud, alleviating constrained resources of edge devices. At the edge, we design adaptive training using small batches to adapt models under limited computing power, and adaptive sampling of training frames for robustness and reducing bandwidth. The evaluations on the realistic dataset show 15%-20% model accuracy improvement compared to the edge-only strategy and fewer network costs than the cloud-only strategy.
Recently, Vision Transformer (ViT) has achieved promising performance in image recognition and gradually serves as a powerful backbone in various vision tasks. To satisfy the sequential input of Transformer, the tail of ViT first splits each image into a sequence of visual tokens with a fixed length. Then the following self-attention layers constructs the global relationship between tokens to produce useful representation for the downstream tasks. Empirically, representing the image with more tokens leads to better performance, yet the quadratic computational complexity of self-attention layer to the number of tokens could seriously influence the efficiency of ViT's inference. For computational reduction, a few pruning methods progressively prune uninformative tokens in the Transformer encoder, while leaving the number of tokens before the Transformer untouched. In fact, fewer tokens as the input for the Transformer encoder can directly reduce the following computational cost. In this spirit, we propose a Multi-Tailed Vision Transformer (MT-ViT) in the paper. MT-ViT adopts multiple tails to produce visual sequences of different lengths for the following Transformer encoder. A tail predictor is introduced to decide which tail is the most efficient for the image to produce accurate prediction. Both modules are optimized in an end-to-end fashion, with the Gumbel-Softmax trick. Experiments on ImageNet-1K demonstrate that MT-ViT can achieve a significant reduction on FLOPs with no degradation of the accuracy and outperform other compared methods in both accuracy and FLOPs.
Deploying pre-trained transformer models like BERT on downstream tasks in resource-constrained scenarios is challenging due to their high inference cost, which grows rapidly with input sequence length. In this work, we propose a constraint-aware and ranking-distilled token pruning method ToP, which selectively removes unnecessary tokens as input sequence passes through layers, allowing the model to improve online inference speed while preserving accuracy. ToP overcomes the limitation of inaccurate token importance ranking in the conventional self-attention mechanism through a ranking-distilled token distillation technique, which distills effective token rankings from the final layer of unpruned models to early layers of pruned models. Then, ToP introduces a coarse-to-fine pruning approach that automatically selects the optimal subset of transformer layers and optimizes token pruning decisions within these layers through improved $L_0$ regularization. Extensive experiments on GLUE benchmark and SQuAD tasks demonstrate that ToP outperforms state-of-the-art token pruning and model compression methods with improved accuracy and speedups. ToP reduces the average FLOPs of BERT by 8.1x while achieving competitive accuracy on GLUE, and provides a real latency speedup of up to 7.4x on an Intel CPU.
Optimal design is a critical yet challenging task within many applications. This challenge arises from the need for extensive trial and error, often done through simulations or running field experiments. Fortunately, sequential optimal design, also referred to as Bayesian optimization when using surrogates with a Bayesian flavor, has played a key role in accelerating the design process through efficient sequential sampling strategies. However, a key opportunity exists nowadays. The increased connectivity of edge devices sets forth a new collaborative paradigm for Bayesian optimization. A paradigm whereby different clients collaboratively borrow strength from each other by effectively distributing their experimentation efforts to improve and fast-track their optimal design process. To this end, we bring the notion of consensus to Bayesian optimization, where clients agree (i.e., reach a consensus) on their next-to-sample designs. Our approach provides a generic and flexible framework that can incorporate different collaboration mechanisms. In lieu of this, we propose transitional collaborative mechanisms where clients initially rely more on each other to maneuver through the early stages with scant data, then, at the late stages, focus on their own objectives to get client-specific solutions. Theoretically, we show the sub-linear growth in regret for our proposed framework. Empirically, through simulated datasets and a real-world collaborative material discovery experiment, we show that our framework can effectively accelerate and improve the optimal design process and benefit all participants.
Due to limited resources on edge and different characteristics of deep neural network (DNN) models, it is a big challenge to optimize DNN inference performance in terms of energy consumption and end-to-end latency on edge devices. In addition to the dynamic voltage frequency scaling (DVFS) technique, the edge-cloud architecture provides a collaborative approach for efficient DNN inference. However, current edge-cloud collaborative inference methods have not optimized various compute resources on edge devices. Thus, we propose DVFO, a novel DVFS-enabled edge-cloud collaborative inference framework, which co-optimizes DVFS and offloading parameters via deep reinforcement learning (DRL). Specifically, DVFO automatically co-optimizes 1) the CPU, GPU and memory frequencies of edge devices, and 2) the feature maps to be offloaded to cloud servers. In addition, it leverages a thinking-while-moving concurrent mechanism to accelerate the DRL learning process, and a spatial-channel attention mechanism to extract DNN feature maps of secondary importance for workload offloading. This approach improves inference performance for different DNN models under various edge-cloud network conditions. Extensive evaluations using two datasets and six widely-deployed DNN models on three heterogeneous edge devices show that DVFO significantly reduces the energy consumption by 33% on average, compared to state-of-the-art schemes. Moreover, DVFO achieves up to 28.6%-59.1% end-to-end latency reduction, while maintaining accuracy within 1% loss on average.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
In recent years, Graph Neural Networks (GNNs), which can naturally integrate node information and topological structure, have been demonstrated to be powerful in learning on graph data. These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key. However, building social recommender systems based on GNNs faces challenges. For example, the user-item graph encodes both interactions and their associated opinions; social relations have heterogeneous strengths; users involve in two graphs (e.g., the user-user social graph and the user-item graph). To address the three aforementioned challenges simultaneously, in this paper, we present a novel graph neural network framework (GraphRec) for social recommendations. In particular, we provide a principled approach to jointly capture interactions and opinions in the user-item graph and propose the framework GraphRec, which coherently models two graphs and heterogeneous strengths. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed framework GraphRec. Our code is available at \url{//github.com/wenqifan03/GraphRec-WWW19}
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.