We show how to translate a subset of RISC-V machine code compiled from a subset of C to quadratic unconstrained binary optimization (QUBO) models that can be solved by a quantum annealing machine: given a bound $n$, there is input $I$ to a program $P$ such that $P$ runs into a given program state $E$ executing no more than $n$ machine instructions if and only if the QUBO model of $P$ for $n$ evaluates to 0 on $I$. Thus, with more qubits on the machine than variables in the QUBO model, quantum annealing the model reaches 0 (ground) energy in constant time with high probability on some input $I$ that is part of the ground state if and only if $P$ runs into $E$ on $I$ executing no more than $n$ instructions. Translation takes $\mathcal{O}(n^2)$ time effectively turning a quantum annealer into a polynomial-time symbolic execution engine and bounded model checker, eliminating their path and state explosion problems. Here, we take advantage of the fact that any machine instruction may only increase the size of the program state by a constant amount of bits. Translation time comes down from $\mathcal{O}(n^2)$ to $\mathcal{O}(n\cdot|P|)$ if memory consumption of $P$ is bounded by a constant, establishing a linear (quadratic) upper bound on quantum space, in number of qubits on a quantum annealer, in terms of algorithmic time (space) in classical computing, implying $NP\subseteq BQP$. Our prototypical open-source toolchain translates machine code that runs on real RISC-V hardware to models that can be solved by real quantum annealing hardware, as shown in our experiments.
Can quantum entanglement increase the capacity of (classical) covert channels? To one familiar with Holevo's Theorem it is tempting to think that the answer is obviously no. However, in this work we show: quantum entanglement can in fact increase the capacity of a classical covert channel, in the presence of an active adversary; on the other hand, a zero-capacity channel is not improved by entanglement, so entanglement cannot create `purely quantum' covert channels; the problem of determining the capacity of a given channel in the presence of entanglement is undecidable; but there is an algorithm to bound the entangled capacity of a channel from above, adapted from the semi-definite hierarchy from the theory of non-local games, whose close connection to channel capacity is at the core of all of our results.
We show that Gottesman's semantics (GROUP22, 1998) for Clifford circuits based on the Heisenberg representation can be treated as a type system that can efficiently characterize a common subset of quantum programs. Our applications include (i) certifying whether auxiliary qubits can be safely disposed of, (ii) determining if a system is separable across a given bi-partition, (iii) checking the transversality of a gate with respect to a given stabilizer code, and (iv) typing post-measurement states for computational basis measurements. Further, this type system is extended to accommodate universal quantum computing by deriving types for the $T$-gate, multiply-controlled unitaries such as the Toffoli gate, and some gate injection circuits that use associated magic states. These types allow us to prove a lower bound on the number of $T$ gates necessary to perform a multiply-controlled $Z$ gate.
In this research work, an explicit Runge-Kutta-Fehlberg (RKF) time integration with a fourth-order compact finite difference scheme in space and a high order analytical approximation of the optimal exercise boundary is employed for solving the regime-switching pricing model. In detail, we recast the free boundary problem into a system of nonlinear partial differential equations with a multi-fixed domain. We then introduce a transformation based on the square root function with a Lipschitz character from which a high order analytical approximation is obtained to compute the derivative of the optimal exercise boundary in each regime. We further compute the boundary values, asset option, and the option Greeks for each regime using fourth-order spatial discretization and adaptive time integration. In particular, the coupled assets options and option Greeks are estimated using Hermite interpolation with Newton basis. Finally, a numerical experiment is carried out with two- and four-regimes examples and results are compared with the existing methods. The results obtained from the numerical experiment show that the present method provides better performance in terms of computational speed and more accurate solutions with a large step size.
Quantum Annealing (QA) is a computational framework where a quantum system's continuous evolution is used to find the global minimum of an objective function over an unstructured search space. It can be seen as a general metaheuristic for optimization problems, including NP-hard ones if we allow an exponentially large running time. While QA is widely studied from a heuristic point of view, little is known about theoretical guarantees on the quality of the solutions obtained in polynomial time. In this paper we use a technique borrowed from theoretical physics, the Lieb-Robinson (LR) bound, and develop new tools proving that short, constant time quantum annealing guarantees constant factor approximations ratios for some optimization problems when restricted to bounded degree graphs. Informally, on bounded degree graphs the LR bound allows us to retrieve a (relaxed) locality argument, through which the approximation ratio can be deduced by studying subgraphs of bounded radius. We illustrate our tools on problems MaxCut and Maximum Independent Set for cubic graphs, providing explicit approximation ratios and the runtimes needed to obtain them. Our results are of similar flavor to the well-known ones obtained in the different but related QAOA (quantum optimization algorithms) framework. Eventually, we discuss theoretical and experimental arguments for further improvements.
We study expected runtimes for quantum programs. Inspired by recent work on probabilistic programs, we first define expected runtime as a generalisation of quantum weakest precondition. Then, we show that the expected runtime of a quantum program can be represented as the expectation of an observable (in physics). A method for computing the expected runtimes of quantum programs in finite-dimensional state spaces is developed. Several examples are provided as applications of this method, including computing the expected runtime of quantum Bernoulli Factory -- a quantum algorithm for generating random numbers. In particular, using our new method, an open problem of computing the expected runtime of quantum random walks introduced by Ambainis et al. (STOC 2001) is solved.
We study the problem of fair $k$-median where each cluster is required to have a fair representation of individuals from different groups. In the fair representation $k$-median problem, we are given a set of points $X$ in a metric space. Each point $x\in X$ belongs to one of $\ell$ groups. Further, we are given fair representation parameters $\alpha_j$ and $\beta_j$ for each group $j\in [\ell]$. We say that a $k$-clustering $C_1, \cdots, C_k$ fairly represents all groups if the number of points from group $j$ in cluster $C_i$ is between $\alpha_j |C_i|$ and $\beta_j |C_i|$ for every $j\in[\ell]$ and $i\in [k]$. The goal is to find a set $\mathcal{C}$ of $k$ centers and an assignment $\phi: X\rightarrow \mathcal{C}$ such that the clustering defined by $(\mathcal{C}, \phi)$ fairly represents all groups and minimizes the $\ell_1$-objective $\sum_{x\in X} d(x, \phi(x))$. We present an $O(\log k)$-approximation algorithm that runs in time $n^{O(\ell)}$. Note that the known algorithms for the problem either (i) violate the fairness constraints by an additive term or (ii) run in time that is exponential in both $k$ and $\ell$. We also consider an important special case of the problem where $\alpha_j = \beta_j = \frac{f_j}{f}$ and $f_j, f \in \mathbb{N}$ for all $j\in [\ell]$. For this special case, we present an $O(\log k)$-approximation algorithm that runs in $(kf)^{O(\ell)}\log n + poly(n)$ time.
Quantum Variational Circuits (QVCs) are often claimed as one of the most potent uses of both near term and long term quantum hardware. The standard approaches to optimizing these circuits rely on a classical system to compute the new parameters at every optimization step. However, this process can be extremely challenging both in terms of navigating the exponentially scaling complex Hilbert space, barren plateaus, and the noise present in all foreseeable quantum hardware. Although a variety of optimization algorithms are employed in practice, there is often a lack of theoretical or empirical motivations for this choice. To this end we empirically evaluate the potential of many common gradient and gradient free optimizers on a variety of optimization tasks. These tasks include both classical and quantum data based optimization routines. Our evaluations were conducted in both noise free and noisy simulations. The large number of problems and optimizers yields strong empirical guidance for choosing optimizers for QVCs that is currently lacking.
We present substantially generalized and improved quantum algorithms over prior work for inhomogeneous linear and nonlinear ordinary differential equations (ODE). In Berry et al., (2017), a quantum algorithm for a certain class of linear ODEs is given, where the matrix involved needs to be diagonalizable. The quantum algorithm for linear ODEs presented here extends to many classes of non-diagonalizable matrices. The algorithm here can also be exponentially faster for certain classes of diagonalizable matrices. Our linear ODE algorithm is then applied to nonlinear differential equations using Carleman linearization (an approach taken recently by us in Liu et al., (2021)). The improvement over that result is two-fold. First, we obtain an exponentially better dependence on error. This kind of logarithmic dependence on error has also been achieved by Xue et al., (2021), but only for homogeneous nonlinear equations. Second, the present algorithm can handle any sparse, invertible matrix (that models dissipation) if it has a negative log-norm (including non-diagonalizable matrices), whereas Liu et al., (2021) and Xue et al., (2021) additionally require normality.
Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.
A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint that is, up to small constant factors, no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.