We present a new approach to randomized distributed graph coloring that is simpler and more efficient than previous ones. In particular, it allows us to tackle the $(\operatorname{deg}+1)$-list-coloring (D1LC) problem, where each node $v$ of degree $d_v$ is assigned a palette of $d_v+1$ colors, and the objective is to find a proper coloring using these palettes. While for $(\Delta+1)$-coloring (where $\Delta$ is the maximum degree), there is a fast randomized distributed $O(\log^3\log n)$-round algorithm (Chang, Li, and Pettie [SIAM J. Comp. 2020]), no $o(\log n)$-round algorithms are known for the D1LC problem. We give a randomized distributed algorithm for D1LC that is optimal under plausible assumptions about the deterministic complexity of the problem. Using the recent deterministic algorithm of Ghaffari and Kuhn [FOCS2021], our algorithm runs in $O(\log^3 \log n)$ time, matching the best bound known for $(\Delta+1)$-coloring. In addition, it colors all nodes of degree $\Omega(\log^7 n)$ in $O(\log^* n)$ rounds. A key contribution is a subroutine to generate slack for D1LC. When placed into the framework of Assadi, Chen, and Khanna [SODA2019] and Alon and Assadi [APPROX/RANDOM2020], this almost immediately leads to a palette sparsification theorem for D1LC, generalizing previous results. That gives fast algorithms for D1LC in three different models: an $O(1)$-round algorithm in the MPC model with $\tilde{O}(n)$ memory per machine; a single-pass semi-streaming algorithm in dynamic streams; and an $\tilde{O}(n\sqrt{n})$-time algorithm in the standard query model.
This paper considers synchronous discrete-time dynamical systems on graphs based on the threshold model. It is well known that after a finite number of rounds these systems either reach a fixed point or enter a 2-cycle. The problem of finding the fixed points for this type of dynamical system is in general both NP-hard and #P-complete. In this paper we give a surprisingly simple graph-theoretic characterization of fixed points and 2-cycles for the class of finite trees. Thus, the class of trees is the first nontrivial graph class for which a complete characterization of fixed points exists. This characterization enables us to provide bounds for the total number of fixed points and pure 2-cycles. It also leads to an output-sensitive algorithm to efficiently generate these states.
We study the problem of fair $k$-median where each cluster is required to have a fair representation of individuals from different groups. In the fair representation $k$-median problem, we are given a set of points $X$ in a metric space. Each point $x\in X$ belongs to one of $\ell$ groups. Further, we are given fair representation parameters $\alpha_j$ and $\beta_j$ for each group $j\in [\ell]$. We say that a $k$-clustering $C_1, \cdots, C_k$ fairly represents all groups if the number of points from group $j$ in cluster $C_i$ is between $\alpha_j |C_i|$ and $\beta_j |C_i|$ for every $j\in[\ell]$ and $i\in [k]$. The goal is to find a set $\mathcal{C}$ of $k$ centers and an assignment $\phi: X\rightarrow \mathcal{C}$ such that the clustering defined by $(\mathcal{C}, \phi)$ fairly represents all groups and minimizes the $\ell_1$-objective $\sum_{x\in X} d(x, \phi(x))$. We present an $O(\log k)$-approximation algorithm that runs in time $n^{O(\ell)}$. Note that the known algorithms for the problem either (i) violate the fairness constraints by an additive term or (ii) run in time that is exponential in both $k$ and $\ell$. We also consider an important special case of the problem where $\alpha_j = \beta_j = \frac{f_j}{f}$ and $f_j, f \in \mathbb{N}$ for all $j\in [\ell]$. For this special case, we present an $O(\log k)$-approximation algorithm that runs in $(kf)^{O(\ell)}\log n + poly(n)$ time.
In this work, we study a random orthogonal projection based least squares estimator for the stable solution of a multivariate nonparametric regression (MNPR) problem. More precisely, given an integer $d\geq 1$ corresponding to the dimension of the MNPR problem, a positive integer $N\geq 1$ and a real parameter $\alpha\geq -\frac{1}{2},$ we show that a fairly large class of $d-$variate regression functions are well and stably approximated by its random projection over the orthonormal set of tensor product $d-$variate Jacobi polynomials with parameters $(\alpha,\alpha).$ The associated uni-variate Jacobi polynomials have degree at most $N$ and their tensor products are orthonormal over $\mathcal U=[0,1]^d,$ with respect to the associated multivariate Jacobi weights. In particular, if we consider $n$ random sampling points $\mathbf X_i$ following the $d-$variate Beta distribution, with parameters $(\alpha+1,\alpha+1),$ then we give a relation involving $n, N, \alpha$ to ensure that the resulting $(N+1)^d\times (N+1)^d$ random projection matrix is well conditioned. Moreover, we provide squared integrated as well as $L^2-$risk errors of this estimator. Precise estimates of these errors are given in the case where the regression function belongs to an isotropic Sobolev space $H^s(I^d),$ with $s> \frac{d}{2}.$ Also, to handle the general and practical case of an unknown distribution of the $\mathbf X_i,$ we use Shepard's scattered interpolation scheme in order to generate fairly precise approximations of the observed data at $n$ i.i.d. sampling points $\mathbf X_i$ following a $d-$variate Beta distribution. Finally, we illustrate the performance of our proposed multivariate nonparametric estimator by some numerical simulations with synthetic as well as real data.
A total coloring of a graph $G = (V, E)$ is an assignment of colors to vertices and edges such that neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the end-points and the edge itself receive different colors. Any valid total coloring induces a partition of the elements of $G$ into total matchings, which are defined as subsets of vertices and edges that can take the same color. In this paper, we propose Integer Linear Programming models for both the Total Coloring and the Total Matching problems, and we study the strength of the corresponding Linear Programming relaxations. The total coloring is formulated as the problem of finding the minimum number of total matchings that cover all the graph elements. This covering formulation can be solved by a Column Generation algorithm, where the pricing subproblem corresponds to the Weighted Total Matching Problem. Hence, we study the Total Matching Polytope. We introduce three families of nontrivial valid inequalities: vertex-clique inequalities based on standard clique inequalities of the Stable Set Polytope, congruent-$2k3$ cycle inequalities based on the parity of the vertex set induced by the cycle, and even-clique inequalities induced by complete subgraphs of even order. We prove that congruent-$2k3$ cycle inequalities are facet-defining only when $k = 4$, while the vertex-clique and even-cliques are always facet-defining. Finally, we present preliminary computational results of a Column Generation algorithm for the Total Coloring Problem and a Cutting Plane algorithm for the Total Matching Problem.
We derive minimax testing errors in a distributed framework where the data is split over multiple machines and their communication to a central machine is limited to $b$ bits. We investigate both the $d$- and infinite-dimensional signal detection problem under Gaussian white noise. We also derive distributed testing algorithms reaching the theoretical lower bounds. Our results show that distributed testing is subject to fundamentally different phenomena that are not observed in distributed estimation. Among our findings, we show that testing protocols that have access to shared randomness can perform strictly better in some regimes than those that do not. Furthermore, we show that consistent nonparametric distributed testing is always possible, even with as little as $1$-bit of communication and the corresponding test outperforms the best local test using only the information available at a single local machine.
The distributed convex optimization problem over the multi-agent system is considered in this paper, and it is assumed that each agent possesses its own cost function and communicates with its neighbours over a sequence of time-varying directed graphs. However, due to some reasons there exist communication delays while agents receive information from other agents, and we are going to seek the optimal value of the sum of agents' loss functions in this case. We desire to handle this problem with the push-sum distributed dual averaging (PS-DDA) algorithm. It is proved that this algorithm converges and the error decays at a rate $\mathcal{O}\left(T^{-0.5}\right)$ with proper step size, where $T$ is iteration span. The main result presented in this paper also illustrates the convergence of the proposed algorithm is related to the maximum value of the communication delay on one edge. We finally apply the theoretical results to numerical simulations to show the PS-DDA algorithm's performance.
We present a Bayesian nonparametric model for conditional distribution estimation using Bayesian additive regression trees (BART). The generative model we use is based on rejection sampling from a base model. Typical of BART models, our model is flexible, has a default prior specification, and is computationally convenient. To address the distinguished role of the response in the BART model we propose, we further introduce an approach to targeted smoothing which is possibly of independent interest for BART models. We study the proposed model theoretically and provide sufficient conditions for the posterior distribution to concentrate at close to the minimax optimal rate adaptively over smoothness classes in the high-dimensional regime in which many predictors are irrelevant. To fit our model we propose a data augmentation algorithm which allows for existing BART samplers to be extended with minimal effort. We illustrate the performance of our methodology on simulated data and use it to study the relationship between education and body mass index using data from the medical expenditure panel survey (MEPS).
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.
We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.