亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Computational methods for fractional differential equations exhibit essential instability. Even a minor modification of the coefficients or other entry data may switch good results to the divergent. The goal of this paper is to suggest the reliable dual approach which fixes this inconsistency. We suggest to use two parallel methods based on the transformation of fractional derivatives through integration by parts or by means of substitution. We introduce the method of substitution and choose the proper discretization scheme that fits the grid points for the by-parts method. The solution is reliable only if both methods produce the same results. As an additional control tool, the Taylor series expansion allows to estimate the approximation errors for fractional derivatives. In order to demonstrate the proposed dual approach, we apply it to linear, quasilinear and semilinear equations and obtain very good precision of the results. The provided examples and counterexamples support the necessity to use the dual approach because either method, used separately, may produce incorrect results. The order of the exactness is close to the exactness of fractional derivatives approximations.

相關內容

The use of function contracts to specify the behavior of functions often remains limited to the scope of a single function call. Relational properties link several function calls together within a single specification. They can express more advanced properties of a given function, such as non-interference, continuity, or monotonicity. They can also relate calls to different functions, for instance, to show that an optimized implementation is equivalent to its original counterpart. However, relational properties cannot be expressed and verified directly in the traditional setting of modular deductive verification. Self-composition has been proposed to overcome this limitation, but it requires complex transformations and additional separation hypotheses for real-life languages with pointers. We propose a novel approach that is not based on code transformation and avoids those drawbacks. It directly applies a verification condition generator to produce logical formulas that must be verified to ensure a given relational property. The approach has been fully formalized and proved sound in the Coq proof assistant.

The empirical optimal transport (OT) cost between two probability measures from random data is a fundamental quantity in transport based data analysis. In this work, we derive novel guarantees for its convergence rate when the involved measures are different, possibly supported on different spaces. Our central observation is that the statistical performance of the empirical OT cost is determined by the less complex measure, a phenomenon we refer to as lower complexity adaptation of empirical OT. For instance, under Lipschitz ground costs, we find that the empirical OT cost based on $n$ observations converges at least with rate $n^{-1/d}$ to the population quantity if one of the two measures is concentrated on a $d$-dimensional manifold, while the other can be arbitrary. For semi-concave ground costs, we show that the upper bound for the rate improves to $n^{-2/d}$. Similarly, our theory establishes the general convergence rate $n^{-1/2}$ for semi-discrete OT. All of these results are valid in the two-sample case as well, meaning that the convergence rate is still governed by the simpler of the two measures. On a conceptual level, our findings therefore suggest that the curse of dimensionality only affects the estimation of the OT cost when both measures exhibit a high intrinsic dimension. Our proofs are based on the dual formulation of OT as a maximization over a suitable function class $\mathcal{F}_c$ and the observation that the $c$-transform of $\mathcal{F}_c$ under bounded costs has the same uniform metric entropy as $\mathcal{F}_c$ itself.

In this paper, we present convergence analysis of high-order finite element based methods, in particular, we focus on a discontinuous Galerkin scheme using summation-by-parts operators. To this end, it is crucial that structure preserving properties, such as positivity preservation and entropy inequality hold. We demonstrate how to ensure them and prove the convergence of our multidimensional high-order DG scheme via dissipative weak solutions. In numerical simulations, we verify our theoretical results.

Divergence-free discontinuous Galerkin (DG) finite element methods offer a suitable discretization for the pointwise divergence-free numerical solution of Borrvall and Petersson's model for the topology optimization of fluids in Stokes flow [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107]. The convergence results currently found in literature only consider H^1-conforming discretizations for the velocity. In this work, we extend the numerical analysis of Papadopoulos and Suli to divergence-free DG methods with an interior penalty [I. P. A. Papadopoulos and E. Suli, Numerical analysis of a topology optimization problem for Stokes flow, arXiv preprint arXiv:2102.10408, (2021)]. We show that, given an isolated minimizer of the infinite-dimensional problem, there exists a sequence of DG finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to the minimizer.

In this paper, we propose a constructive interference (CI)-based block-level precoding (CI-BLP) approach for the downlink of a multi-user multiple-input single-output (MU-MISO) communication system. Contrary to existing CI precoding approaches which have to be designed on a symbol-by-symbol level, here a constant precoding matrix is applied to a block of symbol slots within a channel coherence interval, thus significantly reducing the computational costs over traditional CI-based symbol-level precoding (CI-SLP) as the CI-BLP optimization problem only needs to be solved once per block. For both PSK and QAM modulation, we formulate an optimization problem to maximize the minimum CI effect over the block subject to a block- rather than symbol-level power budget. We mathematically derive the optimal precoding matrix for CI-BLP as a function of the Lagrange multipliers in closed form. By formulating the dual problem, the original CI-BLP optimization problem is further shown to be equivalent to a quadratic programming (QP) optimization. Numerical results validate our derivations, and show that the proposed CI-BLP scheme achieves improved performance over the traditional CI-SLP method, thanks to the relaxed power constraint over the considered block of symbol slots.

This paper is devoted to the numerical analysis of a piecewise constant discontinuous Galerkin method for time fractional subdiffusion problems. The regularity of weak solution is firstly established by using variational approach and Mittag-Leffler function. Then several optimal error estimates are derived with low regularity data. Finally, numerical experiments are conducted to verify the theoretical results.

The scope of this paper is the analysis and approximation of an optimal control problem related to the Allen-Cahn equation. A tracking functional is minimized subject to the Allen-Cahn equation using distributed controls that satisfy point-wise control constraints. First and second order necessary and sufficient conditions are proved. The lowest order discontinuous Galerkin - in time - scheme is considered for the approximation of the control to state and adjoint state mappings. Under a suitable restriction on maximum size of the temporal and spatial discretization parameters $k$, $h$ respectively in terms of the parameter $\epsilon$ that describes the thickness of the interface layer, a-priori estimates are proved with constants depending polynomially upon $1/ \epsilon$. Unlike to previous works for the uncontrolled Allen-Cahn problem our approach does not rely on a construction of an approximation of the spectral estimate, and as a consequence our estimates are valid under low regularity assumptions imposed by the optimal control setting. These estimates are also valid in cases where the solution and its discrete approximation do not satisfy uniform space-time bounds independent of $\epsilon$. These estimates and a suitable localization technique, via the second order condition (see \cite{Arada-Casas-Troltzsch_2002,Casas-Mateos-Troltzsch_2005,Casas-Raymond_2006,Casas-Mateos-Raymond_2007}), allows to prove error estimates for the difference between local optimal controls and their discrete approximation as well as between the associated state and adjoint state variables and their discrete approximations

The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesised with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the statistical finite element method demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the Wasserstein-2 distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which test the robustness of StatFEM when extended to nonlinear quantities of interest.

This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal H\"older continuity of the spatial semi-discrete numerical solution.

We use the augmented Lagrangian formalism to derive discontinuous Galerkin formulations for problems in nonlinear elasticity. In elasticity stress is typically a symmetric function of strain, leading to symmetric tangent stiffness matrices in Newtons method when conforming finite elements are used for discretization. By use of the augmented Lagrangian framework, we can also obtain symmetric tangent stiffness matrices in discontinuous Galerkin methods. We suggest two different approaches and give examples from plasticity and from large deformation hyperelasticity.

北京阿比特科技有限公司