亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Today's communication networks have stringent availability requirements and hence need to rapidly restore connectivity after failures. Modern networks thus implement various forms of fast reroute mechanisms in the data plane, to bridge the gap to slow global control plane convergence. State-of-the-art fast reroute commonly relies on disjoint route structures, to offer multiple independent paths to the destination. We propose to leverage the network's path diversity to extend edge disjoint path mechanisms to tree routing, in order to improve the performance of fast rerouting. We present two such tree-mechanisms in detail and show that they boost resilience by up to 12% and 25% respectively on real-world, synthetic, and data center topologies, while still retaining good path length qualities.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存儲(chu)技術會(hui)議(yi)。 Publisher:USENIX。 SIT:

The exponential growth in numbers of parameters of neural networks over the past years has been accompanied by an increase in performance across several fields. However, due to their sheer size, the networks not only became difficult to interpret but also problematic to train and use in real-world applications, since hardware requirements increased accordingly. Tackling both issues, we present a novel approach that either drops a neural network's initial weights or inverts their respective sign. Put simply, a network is trained by weight selection and inversion without changing their absolute values. Our contribution extends previous work on masking by additionally sign-inverting the initial weights and follows the findings of the Lottery Ticket Hypothesis. Through this extension and adaptations of initialization methods, we achieve a pruning rate of up to 99%, while still matching or exceeding the performance of various baseline and previous models. Our approach has two main advantages. First, and most notable, signed Supermask models drastically simplify a model's structure, while still performing well on given tasks. Second, by reducing the neural network to its very foundation, we gain insights into which weights matter for performance.

With the remarkable success of deep learning recently, efficient network compression algorithms are urgently demanded for releasing the potential computational power of edge devices, such as smartphones or tablets. However, optimal network pruning is a non-trivial task which mathematically is an NP-hard problem. Previous researchers explain training a pruned network as buying a lottery ticket. In this paper, we investigate the Magnitude-Based Pruning (MBP) scheme and analyze it from a novel perspective through Fourier analysis on the deep learning model to guide model designation. Besides explaining the generalization ability of MBP using Fourier transform, we also propose a novel two-stage pruning approach, where one stage is to obtain the topological structure of the pruned network and the other stage is to retrain the pruned network to recover the capacity using knowledge distillation from lower to higher on the frequency domain. Extensive experiments on CIFAR-10 and CIFAR-100 demonstrate the superiority of our novel Fourier analysis based MBP compared to other traditional MBP algorithms.

We present an algorithm for the maximum matching problem in dynamic (insertion-deletions) streams with *asymptotically optimal* space complexity: for any $n$-vertex graph, our algorithm with high probability outputs an $\alpha$-approximate matching in a single pass using $O(n^2/\alpha^3)$ bits of space. A long line of work on the dynamic streaming matching problem has reduced the gap between space upper and lower bounds first to $n^{o(1)}$ factors [Assadi-Khanna-Li-Yaroslavtsev; SODA 2016] and subsequently to $\text{polylog}{(n)}$ factors [Dark-Konrad; CCC 2020]. Our upper bound now matches the Dark-Konrad lower bound up to $O(1)$ factors, thus completing this research direction. Our approach consists of two main steps: we first (provably) identify a family of graphs, similar to the instances used in prior work to establish the lower bounds for this problem, as the only "hard" instances to focus on. These graphs include an induced subgraph which is both sparse and contains a large matching. We then design a dynamic streaming algorithm for this family of graphs which is more efficient than prior work. The key to this efficiency is a novel sketching method, which bypasses the typical loss of $\text{polylog}{(n)}$-factors in space compared to standard $L_0$-sampling primitives, and can be of independent interest in designing optimal algorithms for other streaming problems.

This paper studies a problem of jointly optimizing two important operations in mobile edge computing without knowing future requests, namely service caching, which determines which services to be hosted at the edge, and service routing, which determines which requests to be processed locally at the edge. We aim to address several practical challenges, including limited storage and computation capacities of edge servers and unknown future request arrival patterns. To this end, we formulate the problem as an online optimization problem, in which the objective function includes costs of forwarding requests, processing requests, and reconfiguring edge servers. By leveraging a natural timescale separation between service routing and service caching, namely, the former happens faster than the latter, we propose an online two-stage algorithm and its randomized variant. Both algorithms have low complexity, and our fractional solution achieves sublinear regret. Simulation results show that our algorithms significantly outperform other state-of-the-art online policies.

We are interested in in silico evaluation methodology for molecular optimization methods. Given a sample of molecules and their properties of our interest, we wish not only to train an agent that can find molecules optimized with respect to the target property but also to evaluate its performance. A common practice is to train a predictor of the target property on the sample and use it for both training and evaluating the agent. We show that this evaluator potentially suffers from two biases; one is due to misspecification of the predictor and the other to reusing the same sample for training and evaluation. We discuss bias reduction methods for each of the biases comprehensively, and empirically investigate their effectiveness.

We study the overparametrization bounds required for the global convergence of stochastic gradient descent algorithm for a class of one hidden layer feed-forward neural networks, considering most of the activation functions used in practice, including ReLU. We improve the existing state-of-the-art results in terms of the required hidden layer width. We introduce a new proof technique combining nonlinear analysis with properties of random initializations of the network. First, we establish the global convergence of continuous solutions of the differential inclusion being a nonsmooth analogue of the gradient flow for the MSE loss. Second, we provide a technical result (working also for general approximators) relating solutions of the aforementioned differential inclusion to the (discrete) stochastic gradient descent sequences, hence establishing linear convergence towards zero loss for the stochastic gradient descent iterations.

Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.

Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.

RNN models have achieved the state-of-the-art performance in a wide range of text mining tasks. However, these models are often regarded as black-boxes and are criticized due to the lack of interpretability. In this paper, we enhance the interpretability of RNNs by providing interpretable rationales for RNN predictions. Nevertheless, interpreting RNNs is a challenging problem. Firstly, unlike existing methods that rely on local approximation, we aim to provide rationales that are more faithful to the decision making process of RNN models. Secondly, a flexible interpretation method should be able to assign contribution scores to text segments of varying lengths, instead of only to individual words. To tackle these challenges, we propose a novel attribution method, called REAT, to provide interpretations to RNN predictions. REAT decomposes the final prediction of a RNN into additive contribution of each word in the input text. This additive decomposition enables REAT to further obtain phrase-level attribution scores. In addition, REAT is generally applicable to various RNN architectures, including GRU, LSTM and their bidirectional versions. Experimental results demonstrate the faithfulness and interpretability of the proposed attribution method. Comprehensive analysis shows that our attribution method could unveil the useful linguistic knowledge captured by RNNs. Some analysis further demonstrates our method could be utilized as a debugging tool to examine the vulnerability and failure reasons of RNNs, which may lead to several promising future directions to promote generalization ability of RNNs.

Deep neural networks and decision trees operate on largely separate paradigms; typically, the former performs representation learning with pre-specified architectures, while the latter is characterised by learning hierarchies over pre-specified features with data-driven architectures. We unite the two via adaptive neural trees (ANTs), a model that incorporates representation learning into edges, routing functions and leaf nodes of a decision tree, along with a backpropagation-based training algorithm that adaptively grows the architecture from primitive modules (e.g., convolutional layers). ANTs allow increased interpretability via hierarchical clustering, e.g., learning meaningful class associations, such as separating natural vs. man-made objects. We demonstrate this on classification and regression tasks, achieving over 99% and 90% accuracy on the MNIST and CIFAR-10 datasets, and outperforming standard neural networks, random forests and gradient boosted trees on the SARCOS dataset. Furthermore, ANT optimisation naturally adapts the architecture to the size and complexity of the training data.

北京阿比特科技有限公司