How can we apply human feedback into generative model? As answer of this question, in this paper, we show the method applied on denoising problem and domain adaptation using human feedback. Deep generative models have demonstrated impressive results in image denoising. However, current image denoising models often produce inappropriate results when applied to domains different from the ones they were trained on. If there are `Good' and `Bad' result for unseen data, how to raise up quality of `Bad' result. Most methods use an approach based on generalization of model. However, these methods require target image for training or adapting unseen domain. In this paper, to adapting domain, we deal with non-target image for unseen domain, and improve specific failed image. To address this, we propose a method for fine-tuning inappropriate results generated in a different domain by utilizing human feedback. First, we train a generator to denoise images using only the noisy MNIST digit '0' images. The denoising generator trained on the source domain leads to unintended results when applied to target domain images. To achieve domain adaptation, we construct a noise-image denoising generated image data set and train a reward model predict human feedback. Finally, we fine-tune the generator on the different domain using the reward model with auxiliary loss function, aiming to transfer denoising capabilities to target domain. Our approach demonstrates the potential to efficiently fine-tune a generator trained on one domain using human feedback from another domain, thereby enhancing denoising abilities in different domains.
In this paper, we propose an autonomous information seeking visual question answering framework, AVIS. Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools and to investigate their outputs, thereby acquiring the indispensable knowledge needed to provide answers to the posed questions. Responding to visual questions that necessitate external knowledge, such as "What event is commemorated by the building depicted in this image?", is a complex task. This task presents a combinatorial search space that demands a sequence of actions, including invoking APIs, analyzing their responses, and making informed decisions. We conduct a user study to collect a variety of instances of human decision-making when faced with this task. This data is then used to design a system comprised of three components: an LLM-powered planner that dynamically determines which tool to use next, an LLM-powered reasoner that analyzes and extracts key information from the tool outputs, and a working memory component that retains the acquired information throughout the process. The collected user behavior serves as a guide for our system in two key ways. First, we create a transition graph by analyzing the sequence of decisions made by users. This graph delineates distinct states and confines the set of actions available at each state. Second, we use examples of user decision-making to provide our LLM-powered planner and reasoner with relevant contextual instances, enhancing their capacity to make informed decisions. We show that AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.
Deep Gaussian Process (DGP) models offer a powerful nonparametric approach for Bayesian inference, but exact inference is typically intractable, motivating the use of various approximations. However, existing approaches, such as mean-field Gaussian assumptions, limit the expressiveness and efficacy of DGP models, while stochastic approximation can be computationally expensive. To tackle these challenges, we introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes. NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior. We solve the minimax problem using Monte Carlo estimation and subsampling stochastic optimization techniques. We demonstrate that the bias introduced by our method can be controlled by multiplying the Fisher divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm. Our experiments on datasets ranging from hundreds to tens of thousands demonstrate the effectiveness and the faster convergence rate of the proposed method. We achieve a classification accuracy of 93.56 on the CIFAR10 dataset, outperforming SOTA Gaussian process methods. Furthermore, our method guarantees theoretically controlled prediction error for DGP models and demonstrates remarkable performance on various datasets. We are optimistic that NOVI has the potential to enhance the performance of deep Bayesian nonparametric models and could have significant implications for various practical applications
In this paper, we investigate the use of large language models (LLMs) like ChatGPT for document-grounded response generation in the context of information-seeking dialogues. For evaluation, we use the MultiDoc2Dial corpus of task-oriented dialogues in four social service domains previously used in the DialDoc 2022 Shared Task. Information-seeking dialogue turns are grounded in multiple documents providing relevant information. We generate dialogue completion responses by prompting a ChatGPT model, using two methods: Chat-Completion and LlamaIndex. ChatCompletion uses knowledge from ChatGPT model pretraining while LlamaIndex also extracts relevant information from documents. Observing that document-grounded response generation via LLMs cannot be adequately assessed by automatic evaluation metrics as they are significantly more verbose, we perform a human evaluation where annotators rate the output of the shared task winning system, the two Chat-GPT variants outputs, and human responses. While both ChatGPT variants are more likely to include information not present in the relevant segments, possibly including a presence of hallucinations, they are rated higher than both the shared task winning system and human responses.
In this paper, we investigate the effectiveness of contrastive learning methods for predicting grasp outcomes in an unsupervised manner. By utilizing a publicly available dataset, we demonstrate that contrastive learning methods perform well on the task of grasp outcomes prediction. Specifically, the dynamic-dictionary-based method with the momentum updating technique achieves a satisfactory accuracy of 81.83% using data from one single tactile sensor, outperforming other unsupervised methods. Our results reveal the potential of contrastive learning methods for applications in the field of robot grasping and highlight the importance of accurate grasp prediction for achieving stable grasps.
Speech-to-Speech and Speech-to-Text translation are currently dynamic areas of research. To contribute to these fields, we present SpeechAlign, a framework to evaluate the underexplored field of source-target alignment in speech models. Our framework has two core components. First, to tackle the absence of suitable evaluation datasets, we introduce the Speech Gold Alignment dataset, built upon a English-German text translation gold alignment dataset. Secondly, we introduce two novel metrics, Speech Alignment Error Rate (SAER) and Time-weighted Speech Alignment Error Rate (TW-SAER), to evaluate alignment quality in speech models. By publishing SpeechAlign we provide an accessible evaluation framework for model assessment, and we employ it to benchmark open-source Speech Translation models.
In this paper, we introduce a new, spectral notion of approximation between directed graphs, which we call singular value (SV) approximation. SV-approximation is stronger than previous notions of spectral approximation considered in the literature, including spectral approximation of Laplacians for undirected graphs (Spielman Teng STOC 2004), standard approximation for directed graphs (Cohen et. al. STOC 2017), and unit-circle approximation for directed graphs (Ahmadinejad et. al. FOCS 2020). Further, SV approximation enjoys several useful properties not possessed by previous notions of approximation, e.g., it is preserved under products of random-walk matrices and bounded matrices. We provide a nearly linear-time algorithm for SV-sparsifying (and hence UC-sparsifying) Eulerian directed graphs, as well as $\ell$-step random walks on such graphs, for any $\ell\leq \text{poly}(n)$. Combined with the Eulerian scaling algorithms of (Cohen et. al. FOCS 2018), given an arbitrary (not necessarily Eulerian) directed graph and a set $S$ of vertices, we can approximate the stationary probability mass of the $(S,S^c)$ cut in an $\ell$-step random walk to within a multiplicative error of $1/\text{polylog}(n)$ and an additive error of $1/\text{poly}(n)$ in nearly linear time. As a starting point for these results, we provide a simple black-box reduction from SV-sparsifying Eulerian directed graphs to SV-sparsifying undirected graphs; such a directed-to-undirected reduction was not known for previous notions of spectral approximation.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).
BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.