Numerically predicting the performance of heterogenous structures without scale separation represents a significant challenge to meet the critical requirements on computational scalability and efficiency -- adopting a mesh fine enough to fully account for the small-scale heterogeneities leads to prohibitive computational costs while simply ignoring these fine heterogeneities tends to drastically over-stiffen the structure's rigidity. This study proposes an approach to construct new material-aware shape (basis) functions per element on a coarse discretization of the structure with respect to each curved bridge nodes (CBNs) defined along the elements' boundaries. Instead of formulating their derivation by solving a nonlinear optimization problem, the shape functions are constructed by building a map from the CBNs to the interior nodes and are ultimately presented in an explicit matrix form as a product of a B\'ezier interpolation transformation and a boundary-interior transformation. The CBN shape function accomodates more flexibility in closely capturing the coarse element's heterogeneity, overcomes the important and challenging issues of inter-element stiffness and displacement discontinuity across interface between coarse elements, and improves the analysis accuracy by orders of magnitude; they also meet the basic geometric properties of shape functions that avoid aphysical analysis results. Extensive numerical examples, including a 3D industrial example of billions of degrees of freedom, are also tested to demonstrate the approach's performance in comparison with results obtained from classical approaches.
Recent advances in localized implicit functions have enabled neural implicit representation to be scalable to large scenes. However, the regular subdivision of 3D space employed by these approaches fails to take into account the sparsity of the surface occupancy and the varying granularities of geometric details. As a result, its memory footprint grows cubically with the input volume, leading to a prohibitive computational cost even at a moderately dense decomposition. In this work, we present a learnable hierarchical implicit representation for 3D surfaces, coded OctField, that allows high-precision encoding of intricate surfaces with low memory and computational budget. The key to our approach is an adaptive decomposition of 3D scenes that only distributes local implicit functions around the surface of interest. We achieve this goal by introducing a hierarchical octree structure to adaptively subdivide the 3D space according to the surface occupancy and the richness of part geometry. As octree is discrete and non-differentiable, we further propose a novel hierarchical network that models the subdivision of octree cells as a probabilistic process and recursively encodes and decodes both octree structure and surface geometry in a differentiable manner. We demonstrate the value of OctField for a range of shape modeling and reconstruction tasks, showing superiority over alternative approaches.
Acyclic model, often depicted as a directed acyclic graph (DAG), has been widely employed to represent directional causal relations among collected nodes. In this article, we propose an efficient method to learn linear non-Gaussian DAG in high dimensional cases, where the noises can be of any continuous non-Gaussian distribution. This is in sharp contrast to most existing DAG learning methods assuming Gaussian noise with additional variance assumptions to attain exact DAG recovery. The proposed method leverages a novel concept of topological layer to facilitate the DAG learning. Particularly, we show that the topological layers can be exactly reconstructed in a bottom-up fashion, and the parent-child relations among nodes in each layer can also be consistently established. More importantly, the proposed method does not require the faithfulness or parental faithfulness assumption which has been widely assumed in the literature of DAG learning. Its advantage is also supported by the numerical comparison against some popular competitors in various simulated examples as well as a real application on the global spread of COVID-19.
We examine the evolutionary basis for risk aversion with respect to aggregate risk. We study populations in which agents face choices between aggregate risk and idiosyncratic risk. We show that the choices that maximize the long-run growth rate are induced by a heterogeneous population in which the least and most risk-averse agents are indifferent between taking an aggregate risk and obtaining its linear and harmonic mean for sure, respectively. Moreover, approximately optimal behavior can be induced by a simple distribution according to which all agents have constant relative risk aversion, and the coefficient of relative risk aversion is uniformly distributed between zero and two.
In this paper, we formulate a Collaborative Pure Exploration in Kernel Bandit problem (CoPE-KB), which provides a novel model for multi-agent multi-task decision making under limited communication and general reward functions, and is applicable to many online learning tasks, e.g., recommendation systems and network scheduling. We consider two settings of CoPE-KB, i.e., Fixed-Confidence (FC) and Fixed-Budget (FB), and design two optimal algorithms CoopKernelFC (for FC) and CoopKernelFB (for FB). Our algorithms are equipped with innovative and efficient kernelized estimators to simultaneously achieve computation and communication efficiency. Matching upper and lower bounds under both the statistical and communication metrics are established to demonstrate the optimality of our algorithms. The theoretical bounds successfully quantify the influences of task similarities on learning acceleration and only depend on the effective dimension of the kernelized feature space. Our analytical techniques, including data dimension decomposition, linear structured instance transformation and (communication) round-speedup induction, are novel and applicable to other bandit problems. Empirical evaluations are provided to validate our theoretical results and demonstrate the performance superiority of our algorithms.
In numerical simulations of complex flows with discontinuities, it is necessary to use nonlinear schemes. The spectrum of the scheme used have a significant impact on the resolution and stability of the computation. Based on the approximate dispersion relation method, we combine the corresponding spectral property with the dispersion relation preservation proposed by De and Eswaran (J. Comput. Phys. 218 (2006) 398-416) and propose a quasi-linear dispersion relation preservation (QL-DRP) analysis method, through which the group velocity of the nonlinear scheme can be determined. In particular, we derive the group velocity property when a high-order Runge-Kutta scheme is used and compare the performance of different time schemes with QL-DRP. The rationality of the QL-DRP method is verified by a numerical simulation and the discrete Fourier transform method. To further evaluate the performance of a nonlinear scheme in finding the group velocity, new hyperbolic equations are designed. The validity of QL-DRP and the group velocity preservation of several schemes are investigated using two examples of the equation for one-dimensional wave propagation and the new hyperbolic equations. The results show that the QL-DRP method integrated with high-order time schemes can determine the group velocity for nonlinear schemes and evaluate their performance reasonably and efficiently.
Lattice-skin structures composed of a thin-shell skin and a lattice infill are widespread in nature and large-scale engineering due to their efficiency and exceptional mechanical properties. Recent advances in additive manufacturing, or 3D printing, make it possible to create lattice-skin structures of almost any size with arbitrary shape and geometric complexity. We propose a novel gradient-based approach to optimising both the shape and infill of lattice-skin structures to improve their efficiency further. The respective gradients are computed by fully considering the lattice-skin coupling while the lattice topology and shape optimisation problems are solved in a sequential manner. The shell is modelled as a Kirchhoff-Love shell and analysed using isogeometric subdivision surfaces, whereas the lattice is modelled as a pin-jointed truss. The lattice consists of many cells, possibly of different sizes, with each containing a small number of struts. We propose a penalisation approach akin to the SIMP (solid isotropic material with penalisation) method for topology optimisation of the lattice. Furthermore, a corresponding sensitivity filter and a lattice extraction technique are introduced to ensure the stability of the optimisation process and to eliminate scattered struts of small cross-sectional areas. The developed topology optimisation technique is suitable for non-periodic, non-uniform lattices. For shape optimisation of both the shell and the lattice, the geometry of the lattice-skin structure is parameterised using the free-form deformation technique. The topology and shape optimisation problems are solved in an iterative, sequential manner. The effectiveness of the proposed approach and the influence of different algorithmic parameters are demonstrated with several numerical examples.
It is not until recently that graph neural networks (GNNs) are adopted to perform graph representation learning, among which, those based on the aggregation of features within the neighborhood of a node achieved great success. However, despite such achievements, GNNs illustrate defects in identifying some common structural patterns which, unfortunately, play significant roles in various network phenomena. In this paper, we propose GraLSP, a GNN framework which explicitly incorporates local structural patterns into the neighborhood aggregation through random anonymous walks. Specifically, we capture local graph structures via random anonymous walks, powerful and flexible tools that represent structural patterns. The walks are then fed into the feature aggregation, where we design various mechanisms to address the impact of structural features, including adaptive receptive radius, attention and amplification. In addition, we design objectives that capture similarities between structures and are optimized jointly with node proximity objectives. With the adequate leverage of structural patterns, our model is able to outperform competitive counterparts in various prediction tasks in multiple datasets.
Learning a faithful directed acyclic graph (DAG) from samples of a joint distribution is a challenging combinatorial problem, owing to the intractable search space superexponential in the number of graph nodes. A recent breakthrough formulates the problem as a continuous optimization with a structural constraint that ensures acyclicity (Zheng et al., 2018). The authors apply the approach to the linear structural equation model (SEM) and the least-squares loss function that are statistically well justified but nevertheless limited. Motivated by the widespread success of deep learning that is capable of capturing complex nonlinear mappings, in this work we propose a deep generative model and apply a variant of the structural constraint to learn the DAG. At the heart of the generative model is a variational autoencoder parameterized by a novel graph neural network architecture, which we coin DAG-GNN. In addition to the richer capacity, an advantage of the proposed model is that it naturally handles discrete variables as well as vector-valued ones. We demonstrate that on synthetic data sets, the proposed method learns more accurate graphs for nonlinearly generated samples; and on benchmark data sets with discrete variables, the learned graphs are reasonably close to the global optima. The code is available at \url{//github.com/fishmoon1234/DAG-GNN}.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.
In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. The optimal cost function of the aggregate problem, a nonlinear function of the features, serves as an architecture for approximation in value space of the optimal cost function or the cost functions of policies of the original problem. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with reinforcement learning based on deep neural networks, which is used to obtain the needed features. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by deep reinforcement learning, thereby potentially leading to more effective policy improvement.