亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transformers have become the go-to architecture for language and vision tasks, yet their theoretical properties, especially memorization capacity, remain elusive. This paper investigates the memorization abilities of multi-head attention mechanisms, examining how many example sequences they can memorize, as a function of the number of heads and sequence length. Motivated by experimental findings on vision transformers, we introduce novel assumptions about the linear independence of input data, distinct from the commonly used general-position assumption. Under these assumptions, we demonstrate that an attention layer with $H$ heads, dimension $d$, and context size $n < d$, featuring $\Theta(Hd^2)$ parameters, can memorize $\Omega(Hn)$ examples. Our analysis sheds light on how different attention heads handle various example sequences, aided by the softmax operator's saturation property. We validate our findings through experiments on synthetic data.

相關內容

Large Language Models have become an integral part of new intelligent and interactive writing assistants. Many are offered commercially with a chatbot-like UI, such as ChatGPT, and provide little information about their inner workings. This makes this new type of widespread system a potential target for deceptive design patterns. For example, such assistants might exploit hidden costs by providing guidance up until a certain point before asking for a fee to see the rest. As another example, they might sneak unwanted content/edits into longer generated or revised text pieces (e.g. to influence the expressed opinion). With these and other examples, we conceptually transfer several deceptive patterns from the literature to the new context of AI writing assistants. Our goal is to raise awareness and encourage future research into how the UI and interaction design of such systems can impact people and their writing.

Transformers come with a high computational cost, yet their effectiveness in addressing problems in language and vision has sparked extensive research aimed at enhancing their efficiency. However, diverse experimental conditions, spanning multiple input domains, prevent a fair comparison based solely on reported results, posing challenges for model selection. To address this gap in comparability, we design a comprehensive benchmark of more than 30 models for image classification, evaluating key efficiency aspects, including accuracy, speed, and memory usage. This benchmark provides a standardized baseline across the landscape of efficiency-oriented transformers and our framework of analysis, based on Pareto optimality, reveals surprising insights. Despite claims of other models being more efficient, ViT remains Pareto optimal across multiple metrics. We observe that hybrid attention-CNN models exhibit remarkable inference memory- and parameter-efficiency. Moreover, our benchmark shows that using a larger model in general is more efficient than using higher resolution images. Thanks to our holistic evaluation, we provide a centralized resource for practitioners and researchers, facilitating informed decisions when selecting transformers or measuring progress of the development of efficient transformers.

In the realm of mimicking human deliberation, large language models (LLMs) show promising performance, thereby amplifying the importance of this research area. Deliberation is influenced by both logic and personality. However, previous studies predominantly focused on the logic of LLMs, neglecting the exploration of personality aspects. In this work, we introduce Dynamic Personality Generation (DPG), a dynamic personality generation method based on Hypernetworks. Initially, we embed the Big Five personality theory into GPT-4 to form a personality assessment machine, enabling it to evaluate characters' personality traits from dialogues automatically. We propose a new metric to assess personality generation capability based on this evaluation method. Then, we use this personality assessment machine to evaluate dialogues in script data, resulting in a personality-dialogue dataset. Finally, we fine-tune DPG on the personality-dialogue dataset. Experiments prove that DPG's personality generation capability is stronger after fine-tuning on this dataset than traditional fine-tuning methods, surpassing prompt-based GPT-4.

Quadrotors have gained popularity over the last decade, aiding humans in complex tasks such as search and rescue, mapping and exploration. Despite their mechanical simplicity and versatility compared to other types of aerial vehicles, they remain vulnerable to rotor failures. In this paper, we propose an algorithmic and mechanical approach to addressing the quadrotor fault-tolerant problem in case of rotor failures. First, we present a fault-tolerant detection and control scheme that includes various attitude error metrics. The scheme transitions to a fault-tolerant control mode by surrendering the yaw control. Subsequently, to ensure compatibility with platform sensing constraints, we investigate the relationship between variations in robot rotational drag, achieved through a modular mechanical design appendage, resulting in yaw rates within sensor limits. This analysis offers a platform-agnostic framework for designing more reliable and robust quadrotors in the event of rotor failures. Extensive experimental results validate the proposed approach providing insights into successfully designing a cost-effective quadrotor capable of fault-tolerant control. The overall design enhances safety in scenarios of faulty rotors, without the need for additional sensors or computational resources.

We investigate the role of uncertainty in decision-making problems with natural language as input. For such tasks, using Large Language Models as agents has become the norm. However, none of the recent approaches employ any additional phase for estimating the uncertainty the agent has about the world during the decision-making task. We focus on a fundamental decision-making framework with natural language as input, which is the one of contextual bandits, where the context information consists of text. As a representative of the approaches with no uncertainty estimation, we consider an LLM bandit with a greedy policy, which picks the action corresponding to the largest predicted reward. We compare this baseline to LLM bandits that make active use of uncertainty estimation by integrating the uncertainty in a Thompson Sampling policy. We employ different techniques for uncertainty estimation, such as Laplace Approximation, Dropout, and Epinets. We empirically show on real-world data that the greedy policy performs worse than the Thompson Sampling policies. These findings suggest that, while overlooked in the LLM literature, uncertainty plays a fundamental role in bandit tasks with LLMs.

Large language models (LLMs) have shown their capabilities in understanding contextual and semantic information regarding knowledge of instance appearances. In this paper, we introduce a novel approach to utilize the strengths of LLMs in understanding contextual appearance variations and to leverage this knowledge into a vision model (here, pedestrian detection). While pedestrian detection is considered one of the crucial tasks directly related to our safety (e.g., intelligent driving systems), it is challenging because of varying appearances and poses in diverse scenes. Therefore, we propose to formulate language-derived appearance elements and incorporate them with visual cues in pedestrian detection. To this end, we establish a description corpus that includes numerous narratives describing various appearances of pedestrians and other instances. By feeding them through an LLM, we extract appearance knowledge sets that contain the representations of appearance variations. Subsequently, we perform a task-prompting process to obtain appearance elements which are guided representative appearance knowledge relevant to a downstream pedestrian detection task. The obtained knowledge elements are adaptable to various detection frameworks, so that we can provide plentiful appearance information by integrating the language-derived appearance elements with visual cues within a detector. Through comprehensive experiments with various pedestrian detectors, we verify the adaptability and effectiveness of our method showing noticeable performance gains and achieving state-of-the-art detection performance on two public pedestrian detection benchmarks (i.e., CrowdHuman and WiderPedestrian).

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司