亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The demand for artificial intelligence (AI) in healthcare is rapidly increasing. However, significant challenges arise from data scarcity and privacy concerns, particularly in medical imaging. While existing generative models have achieved success in image synthesis and image-to-image translation tasks, there remains a gap in the generation of 3D semantic medical images. To address this gap, we introduce Med-DDPM, a diffusion model specifically designed for semantic 3D medical image synthesis, effectively tackling data scarcity and privacy issues. The novelty of Med-DDPM lies in its incorporation of semantic conditioning, enabling precise control during the image generation process. Our model outperforms Generative Adversarial Networks (GANs) in terms of stability and performance, generating diverse and anatomically coherent images with high visual fidelity. Comparative analysis against state-of-the-art augmentation techniques demonstrates that Med-DDPM produces comparable results, highlighting its potential as a data augmentation tool for enhancing model accuracy. In conclusion, Med-DDPM pioneers 3D semantic medical image synthesis by delivering high-quality and anatomically coherent images. Furthermore, the integration of semantic conditioning with Med-DDPM holds promise for image anonymization in the field of biomedical imaging, showcasing the capabilities of the model in addressing challenges related to data scarcity and privacy concerns.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · INFORMS · 分離的 · Extensibility ·
2023 年 9 月 13 日

Emotion detection is a critical technology extensively employed in diverse fields. While the incorporation of commonsense knowledge has proven beneficial for existing emotion detection methods, dialogue-based emotion detection encounters numerous difficulties and challenges due to human agency and the variability of dialogue content.In dialogues, human emotions tend to accumulate in bursts. However, they are often implicitly expressed. This implies that many genuine emotions remain concealed within a plethora of unrelated words and dialogues.In this paper, we propose a Dynamic Causal Disentanglement Model based on hidden variable separation, which is founded on the separation of hidden variables. This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions, thereby enabling more precise emotion recognition. First, we introduce a novel Causal Directed Acyclic Graph (DAG) to establish the correlation between hidden emotional information and other observed elements. Subsequently, our approach utilizes pre-extracted personal attributes and utterance topics as guiding factors for the distribution of hidden variables, aiming to separate irrelevant ones. Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables, enabling the accumulation of emotion-related information throughout the conversation. To guide this disentanglement process, we leverage the ChatGPT-4.0 and LSTM networks to extract utterance topics and personal attributes as observed information.Finally, we test our approach on two popular datasets in dialogue emotion detection and relevant experimental results verified the model's superiority.

The demand for efficient processing of deep neural networks (DNNs) on embedded devices is a significant challenge limiting their deployment. Exploiting sparsity in the network's feature maps is one of the ways to reduce its inference latency. It is known that unstructured sparsity results in lower accuracy degradation with respect to structured sparsity but the former needs extensive inference engine changes to get latency benefits. To tackle this challenge, we propose a solution to induce semi-structured activation sparsity exploitable through minor runtime modifications. To attain high speedup levels at inference time, we design a sparse training procedure with awareness of the final position of the activations while computing the General Matrix Multiplication (GEMM). We extensively evaluate the proposed solution across various models for image classification and object detection tasks. Remarkably, our approach yields a speed improvement of $1.25 \times$ with a minimal accuracy drop of $1.1\%$ for the ResNet18 model on the ImageNet dataset. Furthermore, when combined with a state-of-the-art structured pruning method, the resulting models provide a good latency-accuracy trade-off, outperforming models that solely employ structured pruning techniques.

Quadruped robots are machines intended for challenging and harsh environments. Despite the progress in locomotion strategy, safely recovering from unexpected falls or planned drops is still an open problem. It is further made more difficult when high horizontal velocities are involved. In this work, we propose an optimization-based reactive Landing Controller that uses only proprioceptive measures for torque-controlled quadruped robots that free-fall on a flat horizontal ground, knowing neither the distance to the landing surface nor the flight time. Based on an estimate of the Center of Mass horizontal velocity, the method uses the Variable Height Springy Inverted Pendulum model for continuously recomputing the feet position while the robot is falling. In this way, the quadruped is ready to attain a successful landing in all directions, even in the presence of significant horizontal velocities. The method is demonstrated to dramatically enlarge the region of horizontal velocities that can be dealt with by a naive approach that keeps the feet still during the airborne stage. To the best of our knowledge, this is the first time that a quadruped robot can successfully recover from falls with horizontal velocities up to 3 m/s in simulation. Experiments prove that the used platform, Go1, can successfully attain a stable standing configuration from falls with various horizontal velocity and different angular perturbations.

Media houses reporting on public figures, often come with their own biases stemming from their respective worldviews. A characterization of these underlying patterns helps us in better understanding and interpreting news stories. For this, we need diverse or subjective summarizations, which may not be amenable for classifying into predefined class labels. This work proposes a zero-shot approach for non-extractive or generative characterizations of person entities from a corpus using GPT-2. We use well-articulated articles from several well-known news media houses as a corpus to build a sound argument for this approach. First, we fine-tune a GPT-2 pre-trained language model with a corpus where specific person entities are characterized. Second, we further fine-tune this with demonstrations of person entity characterizations, created from a corpus of programmatically constructed characterizations. This twice fine-tuned model is primed with manual prompts consisting of entity names that were not previously encountered in the second fine-tuning, to generate a simple sentence about the entity. The results were encouraging, when compared against actual characterizations from the corpus.

We study a new incentive problem of social information sharing for location-based services (e.g., Waze and Yelp). The problem aims to crowdsource a mass of mobile users to learn massive point-of-interest (PoI) information while traveling and share it with each other as a public good. Given that crowdsourced users mind their own travel costs and possess various preferences over the PoI information along different paths, we formulate the problem as a non-atomic routing game with positive network externalities. We first show by price of anarchy (PoA) analysis that, in the absence of any incentive design, users' selfish routing on the path with the lowest cost will limit information diversity and lead to an arbitrarily large efficiency loss from the social optimum. This motivates us to explore effective incentive mechanisms to remedy while upholding individual rationality, incentive compatibility, and budget balance to ensure practical feasibility. We start by presenting an adaptive information restriction (AIR) mechanism that dynamically customizes restriction fractions, depending on the real user flows along different paths, to govern users' access to the shared PoI aggregation. We show that AIR achieves a PoA of 0.25 for homogeneous users (of identical PoI preferences over paths) and 0.125 for heterogeneous users in a typical network of two parallel paths. Further, we propose a side-payment mechanism (ASP) that adaptively charges or rewards users along certain paths. With those charges and rewards well-tailored, ASP significantly improves the PoA to 1 (optimal) and 0.5 for homogeneous and heterogeneous users in the two-path network, respectively. For a generalized network of multiple parallel paths, we further advance ASP to be able to guarantee a PoA of 0.5. Additionally, our theoretical results are well corroborated by our numerical findings.

Deep neural networks (DNN) have demonstrated unprecedented success for medical imaging applications. However, due to the issue of limited dataset availability and the strict legal and ethical requirements for patient privacy protection, the broad applications of medical imaging classification driven by DNN with large-scale training data have been largely hindered. For example, when training the DNN from one domain (e.g., with data only from one hospital), the generalization capability to another domain (e.g., data from another hospital) could be largely lacking. In this paper, we aim to tackle this problem by developing the privacy-preserving constrained domain generalization method, aiming to improve the generalization capability under the privacy-preserving condition. In particular, We propose to improve the information aggregation process on the centralized server-side with a novel gradient alignment loss, expecting that the trained model can be better generalized to the "unseen" but related medical images. The rationale and effectiveness of our proposed method can be explained by connecting our proposed method with the Maximum Mean Discrepancy (MMD) which has been widely adopted as the distribution distance measurement. Experimental results on two challenging medical imaging classification tasks indicate that our method can achieve better cross-domain generalization capability compared to the state-of-the-art federated learning methods.

Cyber-physical systems (CPSs), like train control and management systems (TCMS), are becoming ubiquitous in critical infrastructures. As safety-critical systems, ensuring their dependability during operation is crucial. Digital twins (DTs) have been increasingly studied for this purpose owing to their capability of runtime monitoring and warning, prediction and detection of anomalies, etc. However, constructing a DT for anomaly detection in TCMS necessitates sufficient training data and extracting both chronological and context features with high quality. Hence, in this paper, we propose a novel method named KDDT for TCMS anomaly detection. KDDT harnesses a language model (LM) and a long short-term memory (LSTM) network to extract contexts and chronological features, respectively. To enrich data volume, KDDT benefits from out-of-domain data with knowledge distillation (KD). We evaluated KDDT with two datasets from our industry partner Alstom and obtained the F1 scores of 0.931 and 0.915, respectively, demonstrating the effectiveness of KDDT. We also explored individual contributions of the DT model, LM, and KD to the overall performance of KDDT, via a comprehensive empirical study, and observed average F1 score improvements of 12.4%, 3%, and 6.05%, respectively.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.

北京阿比特科技有限公司