亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning image processing models have had remarkable success in recent years in generating high quality images. Particularly, the Improved Denoising Diffusion Probabilistic Models (DDPM) have shown superiority in image quality to the state-of-the-art generative models, which motivated us to investigate their capability in the generation of the synthetic electrocardiogram (ECG) signals. In this work, synthetic ECG signals are generated by the Improved DDPM and by the Wasserstein GAN with Gradient Penalty (WGAN-GP) models and then compared. To this end, we devise a pipeline to utilize DDPM in its original $2D$ form. First, the $1D$ ECG time series data are embedded into the $2D$ space, for which we employed the Gramian Angular Summation/Difference Fields (GASF/GADF) as well as Markov Transition Fields (MTF) to generate three $2D$ matrices from each ECG time series, which when put together, form a $3$-channel $2D$ datum. Then $2D$ DDPM is used to generate $2D$ $3$-channel synthetic ECG images. The $1D$ ECG signals are created by de-embedding the $2D$ generated image files back into the $1D$ space. This work focuses on unconditional models and the generation of \emph{Normal Sinus Beat} ECG signals exclusively, where the Normal Sinus Beat class from the MIT-BIH Arrhythmia dataset is used in the training phase. The \emph{quality}, \emph{distribution}, and the \emph{authenticity} of the generated ECG signals by each model are quantitatively evaluated and compared. Our results show that in the proposed pipeline and in the particular setting of this paper, the WGAN-GP model is consistently superior to DDPM in all the considered metrics.

相關內容

Accurate segmentation of fetal brain magnetic resonance images is crucial for analyzing fetal brain development and detecting potential neurodevelopmental abnormalities. Traditional deep learning-based automatic segmentation, although effective, requires extensive training data with ground-truth labels, typically produced by clinicians through a time-consuming annotation process. To overcome this challenge, we propose a novel unsupervised segmentation method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training. Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image. This cascaded network can then be used to register multiple annotated images with the image to be segmented, and combine the propagated labels to form a refined segmentation. Our experiments demonstrate that the proposed cascaded architecture outperforms the state-of-the-art registration methods that were tested. Furthermore, the derived segmentation method achieves similar performance and inference time to nnU-Net while only using a small subset of annotated data for the multi-atlas segmentation task and none for training the network. Our pipeline for registration and multi-atlas segmentation is publicly available at //github.com/ValBcn/CasReg.

Large amounts of tabular data remain underutilized due to privacy, data quality, and data sharing limitations. While training a generative model producing synthetic data resembling the original distribution addresses some of these issues, most applications require additional constraints from the generated data. Existing synthetic data approaches are limited as they typically only handle specific constraints, e.g., differential privacy (DP) or increased fairness, and lack an accessible interface for declaring general specifications. In this work, we introduce ProgSyn, the first programmable synthetic tabular data generation algorithm that allows for comprehensive customization over the generated data. To ensure high data quality while adhering to custom specifications, ProgSyn pre-trains a generative model on the original dataset and fine-tunes it on a differentiable loss automatically derived from the provided specifications. These can be programmatically declared using statistical and logical expressions, supporting a wide range of requirements (e.g., DP or fairness, among others). We conduct an extensive experimental evaluation of ProgSyn on a number of constraints, achieving a new state-of-the-art on some, while remaining general. For instance, at the same fairness level we achieve 2.3% higher downstream accuracy than the state-of-the-art in fair synthetic data generation on the Adult dataset. Overall, ProgSyn provides a versatile and accessible framework for generating constrained synthetic tabular data, allowing for specifications that generalize beyond the capabilities of prior work.

Hyperspectral images (HSI) have a large amount of spectral information reflecting the characteristics of matter, while their spatial resolution is low due to the limitations of imaging technology. Complementary to this are multispectral images (MSI), e.g., RGB images, with high spatial resolution but insufficient spectral bands. Hyperspectral and multispectral image fusion is a technique for acquiring ideal images that have both high spatial and high spectral resolution cost-effectively. Many existing HSI and MSI fusion algorithms rely on known imaging degradation models, which are often not available in practice. In this paper, we propose a deep fusion method based on the conditional denoising diffusion probabilistic model, called DDPM-Fus. Specifically, the DDPM-Fus contains the forward diffusion process which gradually adds Gaussian noise to the high spatial resolution HSI (HrHSI) and another reverse denoising process which learns to predict the desired HrHSI from its noisy version conditioning on the corresponding high spatial resolution MSI (HrMSI) and low spatial resolution HSI (LrHSI). Once the training is completes, the proposed DDPM-Fus implements the reverse process on the test HrMSI and LrHSI to generate the fused HrHSI. Experiments conducted on one indoor and two remote sensing datasets show the superiority of the proposed model when compared with other advanced deep learningbased fusion methods. The codes of this work will be opensourced at this address: //github.com/shuaikaishi/DDPMFus for reproducibility.

Images captured in poorly lit conditions are often corrupted by acquisition noise. Leveraging recent advances in graph-based regularization, we propose a fast Retinex-based restoration scheme that denoises and contrast-enhances an image. Specifically, by Retinex theory we first assume that each image pixel is a multiplication of its reflectance and illumination components. We next assume that the reflectance and illumination components are piecewise constant (PWC) and continuous piecewise planar (PWP) signals, which can be recovered via graph Laplacian regularizer (GLR) and gradient graph Laplacian regularizer (GGLR) respectively. We formulate quadratic objectives regularized by GLR and GGLR, which are minimized alternately until convergence by solving linear systems -- with improved condition numbers via proposed preconditioners -- via conjugate gradient (CG) efficiently. Experimental results show that our algorithm achieves competitive visual image quality while reducing computation complexity noticeably.

Despite the ability of existing large-scale text-to-image (T2I) models to generate high-quality images from detailed textual descriptions, they often lack the ability to precisely edit the generated or real images. In this paper, we propose a novel image editing method, DragonDiffusion, enabling Drag-style manipulation on Diffusion models. Specifically, we construct classifier guidance based on the strong correspondence of intermediate features in the diffusion model. It can transform the editing signals into gradients via feature correspondence loss to modify the intermediate representation of the diffusion model. Based on this guidance strategy, we also build a multi-scale guidance to consider both semantic and geometric alignment. Moreover, a cross-branch self-attention is added to maintain the consistency between the original image and the editing result. Our method, through an efficient design, achieves various editing modes for the generated or real images, such as object moving, object resizing, object appearance replacement, and content dragging. It is worth noting that all editing and content preservation signals come from the image itself, and the model does not require fine-tuning or additional modules. Our source code will be available at //github.com/MC-E/DragonDiffusion.

Diffusion models recently have been successfully applied for the visual synthesis of strikingly realistic appearing images. This raises strong concerns about their potential for malicious purposes. In this paper, we propose using the lightweight multi Local Intrinsic Dimensionality (multiLID), which has been originally developed in context of the detection of adversarial examples, for the automatic detection of synthetic images and the identification of the according generator networks. In contrast to many existing detection approaches, which often only work for GAN-generated images, the proposed method provides close to perfect detection results in many realistic use cases. Extensive experiments on known and newly created datasets demonstrate that multiLID exhibits superiority in diffusion detection and model identification. Since the empirical evaluations of recent publications on the detection of generated images is often too focused on the "LSUN-Bedroom" dataset, we further establish a comprehensive benchmark for the detection of diffusion-generated images, including samples from several diffusion models with different image sizes to evaluate the performance of their multiLID. Code for our experiments is provided at //github.com/deepfake-study/deepfake_multiLID.

The generative autoencoders, such as the variational autoencoders or the adversarial autoencoders, have achieved great success in lots of real-world applications, including image generation, and signal communication. However, little concern has been devoted to their robustness during practical deployment. Due to the probabilistic latent structure, variational autoencoders (VAEs) may confront problems such as a mismatch between the posterior distribution of the latent and real data manifold, or discontinuity in the posterior distribution of the latent. This leaves a back door for malicious attackers to collapse VAEs from the latent space, especially in scenarios where the encoder and decoder are used separately, such as communication and compressed sensing. In this work, we provide the first study on the adversarial robustness of generative autoencoders in the latent space. Specifically, we empirically demonstrate the latent vulnerability of popular generative autoencoders through attacks in the latent space. We also evaluate the difference between variational autoencoders and their deterministic variants and observe that the latter performs better in latent robustness. Meanwhile, we identify a potential trade-off between the adversarial robustness and the degree of the disentanglement of the latent codes. Additionally, we also verify the feasibility of improvement for the latent robustness of VAEs through adversarial training. In summary, we suggest concerning the adversarial latent robustness of the generative autoencoders, analyze several robustness-relative issues, and give some insights into a series of key challenges.

Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.

Deep learning shows great potential in generation tasks thanks to deep latent representation. Generative models are classes of models that can generate observations randomly with respect to certain implied parameters. Recently, the diffusion Model becomes a raising class of generative models by virtue of its power-generating ability. Nowadays, great achievements have been reached. More applications except for computer vision, speech generation, bioinformatics, and natural language processing are to be explored in this field. However, the diffusion model has its natural drawback of a slow generation process, leading to many enhanced works. This survey makes a summary of the field of the diffusion model. We firstly state the main problem with two landmark works - DDPM and DSM. Then, we present a diverse range of advanced techniques to speed up the diffusion models - training schedule, training-free sampling, mixed-modeling, and score & diffusion unification. Regarding existing models, we also provide a benchmark of FID score, IS, and NLL according to specific NFE. Moreover, applications with diffusion models are introduced including computer vision, sequence modeling, audio, and AI for science. Finally, there is a summarization of this field together with limitations & further directions.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司