亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most of the existing research on degrees-of-freedom (DoF) with imperfect channel state information at the transmitter (CSIT) assume the messages are private, which may not reflect reality as the two receivers can request the same content. To overcome this limitation, we therefore consider the hybrid unicast and multicast messages. In particular, we characterize the optimal DoF region for the two-user multiple-input multiple-output (MIMO) broadcast channel (BC) with imperfect CSIT and hybrid messages. For the converse, we establish a three-step procedure to exploit the utmost possible relaxation. For the achievability, since the DoF region is with specific three-dimensional structure regarding antenna configurations and CSIT qualities, we verify the existence or non-existence of corner point candidates via the feature of antenna configurations and CSIT qualities categorization and provide a hybrid message-aware rate-splitting scheme. Besides, we show that to achieve the strictly positive corner points, it is unnecessary to split the unicast messages into private and common parts, implying that adding a multicast message may mitigate the rate-splitting complexity.

相關內容

Rehabilitation therapies are widely employed to assist people with motor impairments in regaining control over their affected body parts. Nevertheless, factors such as fatigue and low self-efficacy can hinder patient compliance during extensive rehabilitation processes. Utilizing hand redirection in virtual reality (VR) enables patients to accomplish seemingly more challenging tasks, thereby bolstering their motivation and confidence. While previous research has investigated user experience and hand redirection among able-bodied people, its effects on motor-impaired people remain unexplored. In this paper, we present a VR rehabilitation application that harnesses hand redirection. Through a user study and semi-structured interviews, we examine the impact of hand redirection on the rehabilitation experiences of people with motor impairments and its potential to enhance their motivation for upper limb rehabilitation. Our findings suggest that patients are not sensitive to hand movement inconsistency, and the majority express interest in incorporating hand redirection into future long-term VR rehabilitation programs.

The recent surge in research focused on generating synthetic data from large language models (LLMs), especially for scenarios with limited data availability, marks a notable shift in Generative Artificial Intelligence (AI). Their ability to perform comparably to real-world data positions this approach as a compelling solution to low-resource challenges. This paper delves into advanced technologies that leverage these gigantic LLMs for the generation of task-specific training data. We outline methodologies, evaluation techniques, and practical applications, discuss the current limitations, and suggest potential pathways for future research.

Virtual Reality (VR) exergames can increase engagement in and motivation for physical activities. Most VR exergames focus on the upper body because many VR setups only track the users' heads and hands. To become a serious alternative to existing exercise programs, VR exergames must provide a balanced workout and train the lower limbs, too. To address this issue, we built a VR exergame focused on vertical jump training to explore full-body exercise applications. To create a safe and effective training, nine domain experts participated in our prototype design. Our mixed-methods study confirms that the jump-centered exercises provided a worthy challenge and positive player experience, indicating long-term retention. Based on our findings, we present five design implications to guide future work: avoid an unintended forward drift, consider technical constraints, address safety concerns in full-body VR exergames, incorporate rhythmic elements with fluent movement patterns, adapt difficulty to players' fitness progression status.

Human forecasting accuracy in practice relies on the 'wisdom of the crowd' effect, in which predictions about future events are significantly improved by aggregating across a crowd of individual forecasters. Past work on the forecasting ability of large language models (LLMs) suggests that frontier LLMs, as individual forecasters, underperform compared to the gold standard of a human crowd forecasting tournament aggregate. In Study 1, we expand this research by using an LLM ensemble approach consisting of a crowd of twelve LLMs. We compare the aggregated LLM predictions on 31 binary questions to that of a crowd of 925 human forecasters from a three-month forecasting tournament. Our preregistered main analysis shows that the LLM crowd outperforms a simple no-information benchmark and is not statistically different from the human crowd. In exploratory analyses, we find that these two approaches are equivalent with respect to medium-effect-size equivalence bounds. We also observe an acquiescence effect, with mean model predictions being significantly above 50%, despite an almost even split of positive and negative resolutions. Moreover, in Study 2, we test whether LLM predictions (of GPT-4 and Claude 2) can be improved by drawing on human cognitive output. We find that both models' forecasting accuracy benefits from exposure to the median human prediction as information, improving accuracy by between 17% and 28%: though this leads to less accurate predictions than simply averaging human and machine forecasts. Our results suggest that LLMs can achieve forecasting accuracy rivaling that of human crowd forecasting tournaments: via the simple, practically applicable method of forecast aggregation. This replicates the 'wisdom of the crowd' effect for LLMs, and opens up their use for a variety of applications throughout society.

This paper aims to investigate the open research problem of uncovering the social behaviors of LLM-based agents. To achieve this goal, we adopt Avalon, a representative communication game, as the environment and use system prompts to guide LLM agents to play the game. While previous studies have conducted preliminary investigations into gameplay with LLM agents, there lacks research on their social behaviors. In this paper, we present a novel framework designed to seamlessly adapt to Avalon gameplay. The core of our proposed framework is a multi-agent system that enables efficient communication and interaction among agents. We evaluate the performance of our framework based on metrics from two perspectives: winning the game and analyzing the social behaviors of LLM agents. Our results demonstrate the effectiveness of our framework in generating adaptive and intelligent agents and highlight the potential of LLM-based agents in addressing the challenges associated with dynamic social environment interaction. By analyzing the social behaviors of LLM agents from the aspects of both collaboration and confrontation, we provide insights into the research and applications of this domain.

We address the task of long-horizon navigation in partially mapped environments for which active gathering of information about faraway unseen space is essential for good behavior. We present a novel planning strategy that, at training time, affords tractable computation of the value of information associated with revealing potentially informative regions of unseen space, data used to train a graph neural network to predict the goodness of temporally-extended exploratory actions. Our learning-augmented model-based planning approach predicts the expected value of information of revealing unseen space and is capable of using these predictions to actively seek information and so improve long-horizon navigation. Across two simulated office-like environments, our planner outperforms competitive learned and non-learned baseline navigation strategies, achieving improvements of up to 63.76% and 36.68%, demonstrating its capacity to actively seek performance-critical information.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司