亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The provision of social care applications is crucial for elderly people to improve their quality of life and enables operators to provide early interventions. Accurate predictions of user dropouts in healthy ageing applications are essential since they are directly related to individual health statuses. Machine Learning (ML) algorithms have enabled highly accurate predictions, outperforming traditional statistical methods that struggle to cope with individual patterns. However, ML requires a substantial amount of data for training, which is challenging due to the presence of personal identifiable information (PII) and the fragmentation posed by regulations. In this paper, we present a federated machine learning (FML) approach that minimizes privacy concerns and enables distributed training, without transferring individual data. We employ collaborative training by considering individuals and organizations under FML, which models both cross-device and cross-silo learning scenarios. Our approach is evaluated on a real-world dataset with non-independent and identically distributed (non-iid) data among clients, class imbalance and label ambiguity. Our results show that data selection and class imbalance handling techniques significantly improve the predictive accuracy of models trained under FML, demonstrating comparable or superior predictive performance than traditional ML models.

相關內容

The potential for deploying autonomous systems can be significantly increased by improving the perception and interpretation of the environment. However, the development of deep learning-based techniques for autonomous systems in unstructured outdoor environments poses challenges due to limited data availability for training and testing. To address this gap, we present the German Outdoor and Offroad Dataset (GOOSE), a comprehensive dataset specifically designed for unstructured outdoor environments. The GOOSE dataset incorporates 10 000 labeled pairs of images and point clouds, which are utilized to train a range of state-of-the-art segmentation models on both image and point cloud data. We open source the dataset, along with an ontology for unstructured terrain, as well as dataset standards and guidelines. This initiative aims to establish a common framework, enabling the seamless inclusion of existing datasets and a fast way to enhance the perception capabilities of various robots operating in unstructured environments. The dataset, pre-trained models for offroad perception, and additional documentation can be found at //goose-dataset.de/.

Robots performing human-scale manipulation tasks require an extensive amount of knowledge about their surroundings in order to perform their actions competently and human-like. In this work, we investigate the use of virtual reality technology as an implementation for robot environment modeling, and present a technique for translating scene graphs into knowledge bases. To this end, we take advantage of the Universal Scene Description (USD) format which is an emerging standard for the authoring, visualization and simulation of complex environments. We investigate the conversion of USD-based environment models into Knowledge Graph (KG) representations that facilitate semantic querying and integration with additional knowledge sources.

Path reasoning methods over knowledge graphs have gained popularity for their potential to improve transparency in recommender systems. However, the resulting models still rely on pre-trained knowledge graph embeddings, fail to fully exploit the interdependence between entities and relations in the KG for recommendation, and may generate inaccurate explanations. In this paper, we introduce PEARLM, a novel approach that efficiently captures user behaviour and product-side knowledge through language modelling. With our approach, knowledge graph embeddings are directly learned from paths over the KG by the language model, which also unifies entities and relations in the same optimisation space. Constraints on the sequence decoding additionally guarantee path faithfulness with respect to the KG. Experiments on two datasets show the effectiveness of our approach compared to state-of-the-art baselines. Source code and datasets: AVAILABLE AFTER GETTING ACCEPTED.

Hate speech on social media threatens the mental and physical well-being of individuals and is further responsible for real-world violence. An important driver behind the spread of hate speech and thus why hateful posts can go viral are reshares, yet little is known about why users reshare hate speech. In this paper, we present a comprehensive, causal analysis of the user attributes that make users reshare hate speech. However, causal inference from observational social media data is challenging, because such data likely suffer from selection bias, and there is further confounding due to differences in the vulnerability of users to hate speech. We develop a novel, three-step causal framework: (1) We debias the observational social media data by applying inverse propensity scoring. (2) We use the debiased propensity scores to model the latent vulnerability of users to hate speech as a latent embedding. (3) We model the causal effects of user attributes on users' probability of sharing hate speech, while controlling for the latent vulnerability of users to hate speech. Compared to existing baselines, a particular strength of our framework is that it models causal effects that are non-linear, yet still explainable. We find that users with fewer followers, fewer friends, and fewer posts share more hate speech. Younger accounts, in return, share less hate speech. Overall, understanding the factors that drive users to share hate speech is crucial for detecting individuals at risk of engaging in harmful behavior and for designing effective mitigation strategies.

We propose a model of treatment interference where the response of a unit depends only on its treatment status and the statuses of units within its K-neighborhood. Current methods for detecting interference include carefully designed randomized experiments and conditional randomization tests on a set of focal units. We give guidance on how to choose focal units under this model of interference. We then conduct a simulation study to evaluate the efficacy of existing methods for detecting network interference. We show that this choice of focal units leads to powerful tests of treatment interference which outperform current experimental methods.

In public health applications, spatial data collected are often recorded at different spatial scales and over different correlated variables. Spatial change of support is a key inferential problem in these applications and have become standard in univariate settings; however, it is less standard in multivariate settings. There are several existing multivariate spatial models that can be easily combined with multiscale spatial approach to analyze multivariate multiscale spatial data. In this paper, we propose three new models from such combinations for bivariate multiscale spatial data in a Bayesian context. In particular, we extend spatial random effects models, multivariate conditional autoregressive models, and ordered hierarchical models through a multiscale spatial approach. We run simulation studies for the three models and compare them in terms of prediction performance and computational efficiency. We motivate our models through an analysis of 2015 Texas annual average percentage receiving two blood tests from the Dartmouth Atlas Project.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司