In this paper, we propose HyperVision, a realtime unsupervised machine learning (ML) based malicious traffic detection system. Particularly, HyperVision is able to detect unknown patterns of encrypted malicious traffic by utilizing a compact inmemory graph built upon the traffic patterns. The graph captures flow interaction patterns represented by the graph structural features, instead of the features of specific known attacks. We develop an unsupervised graph learning method to detect abnormal interaction patterns by analyzing the connectivity, sparsity, and statistical features of the graph, which allows HyperVision to detect various encrypted attack traffic without requiring any labeled datasets of known attacks. Moreover, we establish an information theory model to demonstrate that the information preserved by the graph approaches the ideal theoretical bound. We show the performance of HyperVision by real-world experiments with 92 datasets including 48 attacks with encrypted malicious traffic. The experimental results illustrate that HyperVision achieves at least 0.92 AUC and 0.86 F1, which significantly outperform the state-of-the-art methods. In particular, more than 50% attacks in our experiments can evade all these methods. Moreover, HyperVision achieves at least 80.6 Gb/s detection throughput with the average detection latency of 0.83s.
Dynamic graphs arise in various real-world applications, and it is often welcomed to model the dynamics directly in continuous time domain for its flexibility. This paper aims to design an easy-to-use pipeline (termed as EasyDGL which is also due to its implementation by DGL toolkit) composed of three key modules with both strong fitting ability and interpretability. Specifically the proposed pipeline which involves encoding, training and interpreting: i) a temporal point process (TPP) modulated attention architecture to endow the continuous-time resolution with the coupled spatiotemporal dynamics of the observed graph with edge-addition events; ii) a principled loss composed of task-agnostic TPP posterior maximization based on observed events on the graph, and a task-aware loss with a masking strategy over dynamic graph, where the covered tasks include dynamic link prediction, dynamic node classification and node traffic forecasting; iii) interpretation of the model outputs (e.g., representations and predictions) with scalable perturbation-based quantitative analysis in the graph Fourier domain, which could more comprehensively reflect the behavior of the learned model. Extensive experimental results on public benchmarks show the superior performance of our EasyDGL for time-conditioned predictive tasks, and in particular demonstrate that EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
This work is addressing the problem of defect anomaly detection based on a clean reference image. Specifically, we focus on SEM semiconductor defects in addition to several natural image anomalies. There are well-known methods to create a simulation of an artificial reference image by its defect specimen. In this work, we introduce several applications for this capability, that the simulated reference is beneficial for improving their results. Among these defect detection methods are classic computer vision applied on difference-image, supervised deep-learning (DL) based on human labels, and unsupervised DL which is trained on feature-level patterns of normal reference images. We show in this study how to incorporate correctly the simulated reference image for these defect and anomaly detection applications. As our experiment demonstrates, simulated reference achieves higher performance than the real reference of an image of a defect and anomaly. This advantage of simulated reference occurs mainly due to the less noise and geometric variations together with better alignment and registration to the original defect background.
Predicting the trajectories of surrounding objects is a critical task for self-driving vehicles and many other autonomous systems. Recent works demonstrate that adversarial attacks on trajectory prediction, where small crafted perturbations are introduced to history trajectories, may significantly mislead the prediction of future trajectories and induce unsafe planning. However, few works have addressed enhancing the robustness of this important safety-critical task.In this paper, we present a novel adversarial training method for trajectory prediction. Compared with typical adversarial training on image tasks, our work is challenged by more random input with rich context and a lack of class labels. To address these challenges, we propose a method based on a semi-supervised adversarial autoencoder, which models disentangled semantic features with domain knowledge and provides additional latent labels for the adversarial training. Extensive experiments with different types of attacks demonstrate that our Semisupervised Semantics-guided Adversarial Training (SSAT) method can effectively mitigate the impact of adversarial attacks by up to 73% and outperform other popular defense methods. In addition, experiments show that our method can significantly improve the system's robust generalization to unseen patterns of attacks. We believe that such semantics-guided architecture and advancement on robust generalization is an important step for developing robust prediction models and enabling safe decision-making.
Long-tailed classification poses a challenge due to its heavy imbalance in class probabilities and tail-sensitivity risks with asymmetric misprediction costs. Recent attempts have used re-balancing loss and ensemble methods, but they are largely heuristic and depend heavily on empirical results, lacking theoretical explanation. Furthermore, existing methods overlook the decision loss, which characterizes different costs associated with tailed classes. This paper presents a general and principled framework from a Bayesian-decision-theory perspective, which unifies existing techniques including re-balancing and ensemble methods, and provides theoretical justifications for their effectiveness. From this perspective, we derive a novel objective based on the integrated risk and a Bayesian deep-ensemble approach to improve the accuracy of all classes, especially the "tail". Besides, our framework allows for task-adaptive decision loss which provides provably optimal decisions in varying task scenarios, along with the capability to quantify uncertainty. Finally, We conduct comprehensive experiments, including standard classification, tail-sensitive classification with a new False Head Rate metric, calibration, and ablation studies. Our framework significantly improves the current SOTA even on large-scale real-world datasets like ImageNet.
Lane graph estimation is an essential and highly challenging task in automated driving and HD map learning. Existing methods using either onboard or aerial imagery struggle with complex lane topologies, out-of-distribution scenarios, or significant occlusions in the image space. Moreover, merging overlapping lane graphs to obtain consistent large-scale graphs remains difficult. To overcome these challenges, we propose a novel bottom-up approach to lane graph estimation from aerial imagery that aggregates multiple overlapping graphs into a single consistent graph. Due to its modular design, our method allows us to address two complementary tasks: predicting ego-respective successor lane graphs from arbitrary vehicle positions using a graph neural network and aggregating these predictions into a consistent global lane graph. Extensive experiments on a large-scale lane graph dataset demonstrate that our approach yields highly accurate lane graphs, even in regions with severe occlusions. The presented approach to graph aggregation proves to eliminate inconsistent predictions while increasing the overall graph quality. We make our large-scale urban lane graph dataset and code publicly available at //urbanlanegraph.cs.uni-freiburg.de.
Deep neural network can easily overfit to even noisy labels due to its high capacity, which degrades the generalization performance of a model. To overcome this issue, we propose a new approach for learning from noisy labels (LNL) via post-training, which can significantly improve the generalization performance of any pre-trained model on noisy label data. To this end, we rather exploit the overfitting property of a trained model to identify mislabeled samples. Specifically, our post-training approach gradually removes samples with high influence on the decision boundary and refines the decision boundary to improve generalization performance. Our post-training approach creates great synergies when combined with the existing LNL methods. Experimental results on various real-world and synthetic benchmark datasets demonstrate the validity of our approach in diverse realistic scenarios.
The prediction of traffic flow is a challenging yet crucial problem in spatial-temporal analysis, which has recently gained increasing interest. In addition to spatial-temporal correlations, the functionality of urban areas also plays a crucial role in traffic flow prediction. However, the exploration of regional functional attributes mainly focuses on adding additional topological structures, ignoring the influence of functional attributes on regional traffic patterns. Different from the existing works, we propose a novel module named POI-MetaBlock, which utilizes the functionality of each region (represented by Point of Interest distribution) as metadata to further mine different traffic characteristics in areas with different functions. Specifically, the proposed POI-MetaBlock employs a self-attention architecture and incorporates POI and time information to generate dynamic attention parameters for each region, which enables the model to fit different traffic patterns of various areas at different times. Furthermore, our lightweight POI-MetaBlock can be easily integrated into conventional traffic flow prediction models. Extensive experiments demonstrate that our module significantly improves the performance of traffic flow prediction and outperforms state-of-the-art methods that use metadata.
With the rise of AI and data mining techniques, group profiling and group-level analysis have been increasingly used in many domains including policy making and direct marketing. In some cases, the statistics extracted from data may provide insights to a group's shared characteristics; in others, the group-level analysis can lead to problems including stereotyping and systematic oppression. How can analytic tools facilitate a more conscientious process in group analysis? In this work, we identify a set of accountable group analytics design guidelines to explicate the needs for group differentiation and preventing overgeneralization of a group. Following the design guidelines, we develop TribalGram, a visual analytic suite that leverages interpretable machine learning algorithms and visualization to offer inference assessment, model explanation, data corroboration, and sense-making. Through the interviews with domain experts, we showcase how our design and tools can bring a richer understanding of "groups" mined from the data.
It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.