The property that the velocity $\boldsymbol{u}$ belongs to $L^\infty(0,T;L^2(\Omega)^d)$ is an essential requirement in the definition of energy solutions of models for incompressible fluids. It is, therefore, highly desirable that the solutions produced by discretisation methods are uniformly stable in the $L^\infty(0,T;L^2(\Omega)^d)$-norm. In this work, we establish that this is indeed the case for Discontinuous Galerkin (DG) discretisations (in time and space) of non-Newtonian models with $p$-structure, assuming that $p\geq \frac{3d+2}{d+2}$; the time discretisation is equivalent to the RadauIIA Implicit Runge-Kutta method. We also prove (weak) convergence of the numerical scheme to the weak solution of the system; this type of convergence result for schemes based on quadrature seems to be new. As an auxiliary result, we also derive Gagliardo-Nirenberg-type inequalities on DG spaces, which might be of independent interest.
Given an edge-weighted (metric/general) complete graph with $n$ vertices, the maximum weight (metric/general) $k$-cycle/path packing problem is to find a set of $\frac{n}{k}$ vertex-disjoint $k$-cycles/paths such that the total weight is maximized. In this paper, we consider approximation algorithms. For metric $k$-cycle packing, we improve the previous approximation ratio from $3/5$ to $7/10$ for $k=5$, and from $7/8\cdot(1-1/k)^2$ for $k>5$ to $(7/8-0.125/k)(1-1/k)$ for constant odd $k>5$ and to $7/8\cdot (1-1/k+\frac{1}{k(k-1)})$ for even $k>5$. For metric $k$-path packing, we improve the approximation ratio from $7/8\cdot (1-1/k)$ to $\frac{27k^2-48k+16}{32k^2-36k-24}$ for even $10\geq k\geq 6$. For the case of $k=4$, we improve the approximation ratio from $3/4$ to $5/6$ for metric 4-cycle packing, from $2/3$ to $3/4$ for general 4-cycle packing, and from $3/4$ to $14/17$ for metric 4-path packing.
The Constraint Satisfaction Problem (CSP) is a problem of computing a homomorphism $\mathbf{R}\to \mathbf{\Gamma}$ between two relational structures, where $\mathbf{R}$ is defined over a domain $V$ and $\mathbf{\Gamma}$ is defined over a domain $D$. In a fixed template CSP, denoted $\rm{CSP}(\mathbf{\Gamma})$, the right side structure $\mathbf{\Gamma}$ is fixed and the left side structure $\mathbf{R}$ is unconstrained. In the last two decades it was discovered that the reasons that make fixed template CSPs polynomially solvable are of algebraic nature, namely, templates that are tractable should be preserved under certain polymorphisms. From this perspective the following problem looks natural: given a prespecified finite set of algebras ${\mathcal B}$ whose domain is $D$, is it possible to present the solution set of a given instance of $\rm{CSP}(\mathbf{\Gamma})$ as a subalgebra of ${\mathbb A}_1\times ... \times {\mathbb A}_{|V|}$ where ${\mathbb A}_i\in {\mathcal B}$? We study this problem and show that it can be reformulated as an instance of a certain fixed-template CSP over another template $\mathbf{\Gamma}^{\mathcal B}$. We study conditions under which $\rm{CSP}(\mathbf{\Gamma})$ can be reduced to $\rm{CSP}(\mathbf{\Gamma}^{\mathcal B})$. This issue is connected with the so-called CSP with an input prototype, formulated in the following way: given a homomorphism from $\mathbf{R}$ to $\mathbf{\Gamma}^{\mathcal B}$ find a homomorphism from $\mathbf{R}$ to $\mathbf{\Gamma}$. We prove that if ${\mathcal B}$ contains only tractable algebras, then the latter CSP with an input prototype is tractable. We also prove that $\rm{CSP}(\mathbf{\Gamma}^{\mathcal B})$ can be reduced to $\rm{CSP}(\mathbf{\Gamma})$ if the set ${\mathcal B}$, treated as a relation over $D$, can be expressed as a primitive positive formula over $\mathbf{\Gamma}$.
For an odd prime $p$, we say $f(X) \in {\mathbb F}_p[X]$ computes square roots in $\mathbb F_p$ if, for all nonzero perfect squares $a \in \mathbb F_p$, we have $f(a)^2 = a$. When $p \equiv 3 \mod 4$, it is well known that $f(X) = X^{(p+1)/4}$ computes square roots. This degree is surprisingly low (and in fact lowest possible), since we have specified $(p-1)/2$ evaluations (up to sign) of the polynomial $f(X)$. On the other hand, for $p \equiv 1 \mod 4$ there was previously no nontrivial bound known on the lowest degree of a polynomial computing square roots in $\mathbb F_p$; it could have been anywhere between $\frac{p}{4}$ and $\frac{p}{2}$. We show that for all $p \equiv 1 \mod 4$, the degree of a polynomial computing square roots has degree at least $p/3$. Our main new ingredient is a general lemma which may be of independent interest: powers of a low degree polynomial cannot have too many consecutive zero coefficients. The proof method also yields a robust version: any polynomial that computes square roots for 99\% of the squares also has degree almost $p/3$. In the other direction, we also show that for infinitely many $p \equiv 1 \mod 4$, the degree of a polynomial computing square roots can be $(\frac{1}{2} - \Omega(1))p$.
Lawvere showed that generalised metric spaces are categories enriched over $[0, \infty]$, the quantale of the positive extended reals. The statement of enrichment is a quantitative analogue of being a preorder. Towards seeking a logic for quantitative metric reasoning, we investigate three $[0,\infty]$-valued propositional logics over the Lawvere quantale. The basic logical connectives shared by all three logics are those that can be interpreted in any quantale, viz finite conjunctions and disjunctions, tensor (addition for the Lawvere quantale) and linear implication (here a truncated subtraction); to these we add, in turn, the constant $1$ to express integer values, and scalar multiplication by a non-negative real to express general affine combinations. Quantitative equational logic can be interpreted in the third logic if we allow inference systems instead of axiomatic systems. For each of these logics we develop a natural deduction system which we prove to be decidably complete w.r.t. the quantale-valued semantics. The heart of the completeness proof makes use of the Motzkin transposition theorem. Consistency is also decidable; the proof makes use of Fourier-Motzkin elimination of linear inequalities. Strong completeness does not hold in general, even (as is known) for theories over finitely-many propositional variables; indeed even an approximate form of strong completeness in the sense of Pavelka or Ben Yaacov -- provability up to arbitrary precision -- does not hold. However, we can show it for theories axiomatized by a (not necessarily finite) set of judgements in normal form over a finite set of propositional variables when we restrict to models that do not map variables to $\infty$; the proof uses Hurwicz's general form of the Farkas' Lemma.
The circuit class $\mathsf{QAC}^0$ was introduced by Moore (1999) as a model for constant depth quantum circuits where the gate set includes many-qubit Toffoli gates. Proving lower bounds against such circuits is a longstanding challenge in quantum circuit complexity; in particular, showing that polynomial-size $\mathsf{QAC}^0$ cannot compute the parity function has remained an open question for over 20 years. In this work, we identify a notion of the Pauli spectrum of $\mathsf{QAC}^0$ circuits, which can be viewed as the quantum analogue of the Fourier spectrum of classical $\mathsf{AC}^0$ circuits. We conjecture that the Pauli spectrum of $\mathsf{QAC}^0$ circuits satisfies low-degree concentration, in analogy to the famous Linial, Nisan, Mansour theorem on the low-degree Fourier concentration of $\mathsf{AC}^0$ circuits. If true, this conjecture immediately implies that polynomial-size $\mathsf{QAC}^0$ circuits cannot compute parity. We prove this conjecture for the class of depth-$d$, polynomial-size $\mathsf{QAC}^0$ circuits with at most $n^{O(1/d)}$ auxiliary qubits. We obtain new circuit lower bounds and learning results as applications: this class of circuits cannot correctly compute - the $n$-bit parity function on more than $(\frac{1}{2} + 2^{-\Omega(n^{1/d})})$-fraction of inputs, and - the $n$-bit majority function on more than $(1 - 1/\mathrm{poly}(n))$-fraction of inputs. Additionally we show that this class of $\mathsf{QAC}^0$ circuits with limited auxiliary qubits can be learned with quasipolynomial sample complexity, giving the first learning result for $\mathsf{QAC}^0$ circuits. More broadly, our results add evidence that "Pauli-analytic" techniques can be a powerful tool in studying quantum circuits.
For a function $F: X \to Y$ between real Banach spaces, we show how continuation methods to solve $F(u) = g$ may improve from basic understanding of the critical set $C$ of $F$. The algorithm aims at special points with a large number of preimages, which in turn may be used as initial conditions for standard continuation methods applied to the solution of the desired equation. A geometric model based on the sets $C$ and $F^{-1}(F(C))$ substantiate our choice of curves $c \in X$ with abundant intersections with $C$. We consider three classes of examples. First we handle functions $F: R^2 \to R^2$, for which the reasoning behind the techniques is visualizable. The second set of examples, between spaces of dimension 15, is obtained by discretizing a nonlinear Sturm-Liouville problem for which special points admit a high number of solutions. Finally, we handle a semilinear elliptic operator, by computing the six solutions of an equation of the form $-\Delta - f(u) = g$ studied by Solimini.
The pseudo-inverse of a graph Laplacian matrix, denoted as $L^\dagger$, finds extensive application in various graph analysis tasks. Notable examples include the calculation of electrical closeness centrality, determination of Kemeny's constant, and evaluation of resistance distance. However, existing algorithms for computing $L^\dagger$ are often computationally expensive when dealing with large graphs. To overcome this challenge, we propose novel solutions for approximating $L^\dagger$ by establishing a connection with the inverse of a Laplacian submatrix $L_v$. This submatrix is obtained by removing the $v$-th row and column from the original Laplacian matrix $L$. The key advantage of this connection is that $L_v^{-1}$ exhibits various interesting combinatorial interpretations. We present two innovative interpretations of $L_v^{-1}$ based on spanning trees and loop-erased random walks, which allow us to develop efficient sampling algorithms. Building upon these new theoretical insights, we propose two novel algorithms for efficiently approximating both electrical closeness centrality and Kemeny's constant. We extensively evaluate the performance of our algorithms on five real-life datasets. The results demonstrate that our novel approaches significantly outperform the state-of-the-art methods by several orders of magnitude in terms of both running time and estimation errors for these two graph analysis tasks. To further illustrate the effectiveness of electrical closeness centrality and Kemeny's constant, we present two case studies that showcase the practical applications of these metrics.
We derive novel and sharp high-dimensional Berry--Esseen bounds for the sum of $m$-dependent random vectors over the class of hyper-rectangles exhibiting only a poly-logarithmic dependence in the dimension. Our results hold under minimal assumptions, such as non-degenerate covariances and finite third moments, and yield a sample complexity of order $\sqrt{m/n}$, aside from logarithmic terms, matching the optimal rates established in the univariate case. When specialized to the sums of independent non-degenerate random vectors, we obtain sharp rates under the weakest possible conditions. On the technical side, we develop an inductive relationship between anti-concentration inequalities and Berry--Esseen bounds, inspired by the classical Lindeberg swapping method and the concentration inequality approach for dependent data, that may be of independent interest.
We show that the problem of whether a query is equivalent to a query of tree-width $k$ is decidable, for the class of Unions of Conjunctive Regular Path Queries with two-way navigation (UC2RPQs). A previous result by Barcel\'o, Romero, and Vardi [SIAM Journal on Computing, 2016] has shown decidability for the case $k=1$, and here we extend this result showing that decidability in fact holds for any arbitrary $k\geq 1$. The algorithm is in 2ExpSpace, but for the restricted but practically relevant case where all regular expressions of the query are of the form $a^*$ or $(a_1 + \dotsb + a_n)$ we show that the complexity of the problem drops to $\Pi^P_2$. We also investigate the related problem of approximating a UC2RPQ by queries of small tree-width. We exhibit an algorithm which, for any fixed number $k$, builds the maximal under-approximation of tree-width $k$ of a UC2RPQ. The maximal under-approximation of tree-width $k$ of a query $q$ is a query $q'$ of tree-width $k$ which is contained in $q$ in a maximal and unique way, that is, such that for every query $q''$ of tree-width $k$, if $q''$ is contained in $q$ then $q''$ is also contained in $q'$. Our approach is shown to be robust, in the sense that it allows also to test equivalence with queries of a given path-width, it also covers the previously known result for $k=1$, and it allows to test for equivalence of whether a (one-way) UCRPQ is equivalent to a UCRPQ of a given tree-width (or path-width).
Parametricity is a property of the syntax of type theory implying, e.g., that there is only one function having the type of the polymorphic identity function. Parametricity is usually proven externally, and does not hold internally. Internalising it is difficult because once there is a term witnessing parametricity, it also has to be parametric itself and this results in the appearance of higher dimensional cubes. In previous theories with internal parametricity, either an explicit syntax for higher cubes is present or the theory is extended with a new sort for the interval. In this paper we present a type theory with internal parametricity which is a simple extension of Martin-L\"of type theory: there are a few new type formers, term formers and equations. Geometry is not explicit in this syntax, but emergent: the new operations and equations only refer to objects up to dimension 3. We show that this theory is modelled by presheaves over the BCH cube category. Fibrancy conditions are not needed because we use span-based rather than relational parametricity. We define a gluing model for this theory implying that external parametricity and canonicity hold. The theory can be seen as a special case of a new kind of modal type theory, and it is the simplest setting in which the computational properties of higher observational type theory can be demonstrated.