亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop and implement methods for determining whether relaxing sparsity con- straints on portfolios improves the investment opportunity set for risk-averse investors. We formulate a new estimation procedure for sparse second-order stochastic spanning based on a greedy algorithm and Linear Programming. We show the optimal recovery of the sparse solution asymptotically whether spanning holds or not. From large equity datasets, we estimate the expected utility loss due to possible under-diversification, and find that there is no benefit from expanding a sparse opportunity set beyond 45 assets. The optimal sparse portfolio invests in 10 industry sectors and cuts tail risk when compared to a sparse mean-variance portfolio. On a rolling-window basis, the number of assets shrinks to 25 assets in crisis periods, while standard factor models cannot explain the performance of the sparse portfolios.

相關內容

We propose a new Riemannian gradient descent method for computing spherical area-preserving mappings of topological spheres using a Riemannian retraction-based framework with theoretically guaranteed convergence. The objective function is based on the stretch energy functional, and the minimization is constrained on a power manifold of unit spheres embedded in 3-dimensional Euclidean space. Numerical experiments on several mesh models demonstrate the accuracy and stability of the proposed framework. Comparisons with two existing state-of-the-art methods for computing area-preserving mappings demonstrate that our algorithm is both competitive and more efficient. Finally, we present a concrete application to the problem of landmark-aligned surface registration of two brain models.

When complex Bayesian models exhibit implausible behaviour, one solution is to assemble available information into an informative prior. Challenges arise as prior information is often only available for the observable quantity, or some model-derived marginal quantity, rather than directly pertaining to the natural parameters in our model. We propose a method for translating available prior information, in the form of an elicited distribution for the observable or model-derived marginal quantity, into an informative joint prior. Our approach proceeds given a parametric class of prior distributions with as yet undetermined hyperparameters, and minimises the difference between the supplied elicited distribution and corresponding prior predictive distribution. We employ a global, multi-stage Bayesian optimisation procedure to locate optimal values for the hyperparameters. Three examples illustrate our approach: a cure-fraction survival model, where censoring implies that the observable quantity is a priori a mixed discrete/continuous quantity; a setting in which prior information pertains to $R^{2}$ -- a model-derived quantity; and a nonlinear regression model.

Fourth-order variational inequalities are encountered in various scientific and engineering disciplines, including elliptic optimal control problems and plate obstacle problems. In this paper, we consider additive Schwarz methods for solving fourth-order variational inequalities. Based on a unified framework of various finite element methods for fourth-order variational inequalities, we develop one- and two-level additive Schwarz methods. We prove that the two-level method is scalable in the sense that the convergence rate of the method depends on $H/h$ and $H/\delta$ only, where $h$ and $H$ are the typical diameters of an element and a subdomain, respectively, and $\delta$ measures the overlap among the subdomains. This proof relies on a new nonlinear positivity-preserving coarse interpolation operator, the construction of which was previously unknown. To the best of our knowledge, this analysis represents the first investigation into the scalability of the two-level additive Schwarz method for fourth-order variational inequalities. Our theoretical results are verified by numerical experiments.

Bayesian inference for complex models with an intractable likelihood can be tackled using algorithms performing many calls to computer simulators. These approaches are collectively known as "simulation-based inference" (SBI). Recent SBI methods have made use of neural networks (NN) to provide approximate, yet expressive constructs for the unavailable likelihood function and the posterior distribution. However, they do not generally achieve an optimal trade-off between accuracy and computational demand. In this work, we propose an alternative that provides both approximations to the likelihood and the posterior distribution, using structured mixtures of probability distributions. Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, while exhibiting a much smaller computational footprint. We illustrate our results on several benchmark models from the SBI literature.

By generalizing the stabilizer quantum error-correcting codes, entanglement-assisted quantum error-correcting (EAQEC) codes were introduced, which could be derived from any classical linear codes via the relaxation of self-orthogonality conditions with the aid of pre-shared entanglement between the sender and the receiver. In this paper, three classes of entanglement-assisted quantum error-correcting maximum-distance-separable (EAQMDS) codes are constructed through generalized Reed-Solomon codes. Under our constructions, the minimum distances of our EAQMDS codes are much larger than those of the known EAQMDS codes of the same lengths that consume the same number of ebits. Furthermore, some of the lengths of the EAQMDS codes are not divisors of $q^2-1$, which are completely new and unlike all those known lengths existed before.

This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.

This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.

Weakly supervised surgical instrument segmentation with only instrument presence labels has been rarely explored in surgical domain. To mitigate the highly under-constrained challenges, we extend a two-stage weakly supervised segmentation paradigm with temporal attributes from two perspectives. From a temporal equivariance perspective, we propose a prototype-based temporal equivariance regulation loss to enhance pixel-wise consistency between adjacent features. From a semantic continuity perspective, we propose a class-aware temporal semantic continuity loss to constrain the semantic consistency between a global view of target frame and local non-discriminative regions of adjacent reference frame. To the best of our knowledge, WeakSurg is the first instrument-presence-only weakly supervised segmentation architecture to take temporal information into account for surgical scenarios. Extensive experiments are validated on Cholec80, an open benchmark for phase and instrument recognition. We annotate instance-wise instrument labels with fixed time-steps which are double checked by a clinician with 3-years experience. Our results show that WeakSurg compares favorably with state-of-the-art methods not only on semantic segmentation metrics but also on instance segmentation metrics.

This article aims to provide approximate solutions for the non-linear collision-induced breakage equation using two different semi-analytical schemes, i.e., variational iteration method (VIM) and optimized decomposition method (ODM). The study also includes the detailed convergence analysis and error estimation for ODM in the case of product collisional ($K(\epsilon,\rho)=\epsilon\rho$) and breakage ($b(\epsilon,\rho,\sigma)=\frac{2}{\rho}$) kernels with an exponential decay initial condition. By contrasting estimated concentration function and moments with exact solutions, the novelty of the suggested approaches is presented considering three numerical examples. Interestingly, in one case, VIM provides a closed-form solution, however, finite term series solutions obtained via both schemes supply a great approximation for the concentration function and moments.

This paper establishes the optimal sub-Gaussian variance proxy for truncated Gaussian and truncated exponential random variables. The proofs rely on first characterizing the optimal variance proxy as the unique solution to a set of two equations and then observing that for these two truncated distributions, one may find explicit solutions to this set of equations. Moreover, we establish the conditions under which the optimal variance proxy coincides with the variance, thereby characterizing the strict sub-Gaussianity of the truncated random variables. Specifically, we demonstrate that truncated Gaussian variables exhibit strict sub-Gaussian behavior if and only if they are symmetric, meaning their truncation is symmetric with respect to the mean. Conversely, truncated exponential variables are shown to never exhibit strict sub-Gaussian properties. These findings contribute to the understanding of these prevalent probability distributions in statistics and machine learning, providing a valuable foundation for improved and optimal modeling and decision-making processes.

北京阿比特科技有限公司