亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · FAST · 時間步 · 近似 · Performer ·
2024 年 5 月 7 日

An additive Runge-Kutta method is used for the time stepping, which integrates the linear stiff terms by an explicit singly diagonally implicit Runge-Kutta (ESDIRK) method and the nonlinear terms by an explicit Runge-Kutta (ERK) method. In each time step, the implicit solve is performed by the recently developed Hierarchical Poincar\'e-Steklov (HPS) method. This is a fast direct solver for elliptic equations that decomposes the space domain into a hierarchical tree of subdomains and builds spectral collocation solvers locally on the subdomains. These ideas are naturally combined in the presented method since the singly diagonal coefficient in ESDIRK and a fixed time-step ensures that the coefficient matrix in the implicit solve of HPS remains the same for all time stages. This means that the precomputed inverse can be efficiently reused, leading to a scheme with complexity (in two dimensions) $\mathcal{O}(N^{1.5})$ for the precomputation where the solution operator to the elliptic problems is built, and then $\mathcal{O}(N \log N)$ for the solve in each time step. The stability of the method is proved for first order in time and any order in space, and numerical evidence substantiates a claim of stability for a much broader class of time discretization methods. Numerical experiments supporting the accuracy of efficiency of the method in one and two dimensions are presented.

Some hyperbolic systems are known to include implicit preservation of differential constraints: these are for example the time conservation of the curl or the divergence of a vector that appear as an implicit constraint. In this article, we show that this kind of constraint can be easily conserved at the discrete level with the classical discontinuous Galerkin method, provided the right approximation space is used for the vectorial space, and under some mild assumption on the numerical flux. For this, we develop a discrete differential geometry framework for some well chosen piece-wise polynomial vector approximation space. More precisely, we define the discrete Hodge star operator, the exterior derivative, and their adjoints. The discrete adjoint divergence and curl are proven to be exactly preserved by the discontinuous Galerkin method under a small assumption on the numerical flux. Numerical tests are performed on the wave system, the two dimensional Maxwell system and the induction equation, and confirm that the differential constraints are preserved at machine precision while keeping the high order of accuracy.

Deep neural networks give us a powerful method to model the training dataset's relationship between input and output. We can regard that as a complex adaptive system consisting of many artificial neurons that work as an adaptive memory as a whole. The network's behavior is training dynamics with a feedback loop from the evaluation of the loss function. We already know the training response can be constant or shows power law-like aging in some ideal situations. However, we still have gaps between those findings and other complex phenomena, like network fragility. To fill the gap, we introduce a very simple network and analyze it. We show the training response consists of some different factors based on training stages, activation functions, or training methods. In addition, we show feature space reduction as an effect of stochastic training dynamics, which can result in network fragility. Finally, we discuss some complex phenomena of deep networks.

Spiking neural networks are a type of artificial neural networks in which communication between neurons is only made of events, also called spikes. This property allows neural networks to make asynchronous and sparse computations and therefore drastically decrease energy consumption when run on specialised hardware. However, training such networks is known to be difficult, mainly due to the non-differentiability of the spike activation, which prevents the use of classical backpropagation. This is because state-of-the-art spiking neural networks are usually derived from biologically-inspired neuron models, to which are applied machine learning methods for training. Nowadays, research about spiking neural networks focuses on the design of training algorithms whose goal is to obtain networks that compete with their non-spiking version on specific tasks. In this paper, we attempt the symmetrical approach: we modify the dynamics of a well-known, easily trainable type of recurrent neural network to make it event-based. This new RNN cell, called the Spiking Recurrent Cell, therefore communicates using events, i.e. spikes, while being completely differentiable. Vanilla backpropagation can thus be used to train any network made of such RNN cell. We show that this new network can achieve performance comparable to other types of spiking networks in the MNIST benchmark and its variants, the Fashion-MNIST and the Neuromorphic-MNIST. Moreover, we show that this new cell makes the training of deep spiking networks achievable.

We study the properties of a family of distances between functions of a single variable. These distances are examples of integral probability metrics, and have been used previously for comparing probability measures on the line; special cases include the Earth Mover's Distance and the Kolmogorov Metric. We examine their properties for general signals, proving that they are robust to a broad class of deformations. We also establish corresponding robustness results for the induced sliced distances between multivariate functions. Finally, we establish error bounds for approximating the univariate metrics from finite samples, and prove that these approximations are robust to additive Gaussian noise. The results are illustrated in numerical experiments, which include comparisons with Wasserstein distances.

When multitudes of features can plausibly be associated with a response, both privacy considerations and model parsimony suggest grouping them to increase the predictive power of a regression model. Specifically, the identification of groups of predictors significantly associated with the response variable eases further downstream analysis and decision-making. This paper proposes a new data analysis methodology that utilizes the high-dimensional predictor space to construct an implicit network with weighted edges %and weights on the edges to identify significant associations between the response and the predictors. Using a population model for groups of predictors defined via network-wide metrics, a new supervised grouping algorithm is proposed to determine the correct group, with probability tending to one as the sample size diverges to infinity. For this reason, we establish several theoretical properties of the estimates of network-wide metrics. A novel model-assisted bootstrap procedure that substantially decreases computational complexity is developed, facilitating the assessment of uncertainty in the estimates of network-wide metrics. The proposed methods account for several challenges that arise in the high-dimensional data setting, including (i) a large number of predictors, (ii) uncertainty regarding the true statistical model, and (iii) model selection variability. The performance of the proposed methods is demonstrated through numerical experiments, data from sports analytics, and breast cancer data.

Neural network (NN) designed for challenging machine learning tasks is in general a highly nonlinear mapping that contains massive variational parameters. High complexity of NN, if unbounded or unconstrained, might unpredictably cause severe issues including over-fitting, loss of generalization power, and unbearable cost of hardware. In this work, we propose a general compression scheme that significantly reduces the variational parameters of NN by encoding them to deep automatically-differentiable tensor network (ADTN) that contains exponentially-fewer free parameters. Superior compression performance of our scheme is demonstrated on several widely-recognized NN's (FC-2, LeNet-5, AlextNet, ZFNet and VGG-16) and datasets (MNIST, CIFAR-10 and CIFAR-100). For instance, we compress two linear layers in VGG-16 with approximately $10^{7}$ parameters to two ADTN's with just 424 parameters, where the testing accuracy on CIFAR-10 is improved from $90.17 \%$ to $91.74\%$. Our work suggests TN as an exceptionally efficient mathematical structure for representing the variational parameters of NN's, which exhibits superior compressibility over the commonly-used matrices and multi-way arrays.

We propose an abstract conceptual framework for analysing complex security systems using a new notion of modes and mode transitions. A mode is an independent component of a system with its own objectives, monitoring data, algorithms, and scope and limits. The behaviour of a mode, including its transitions to other modes, is determined by interpretations of the mode's monitoring data in the light of its objectives and capabilities -- these interpretations we call beliefs. We formalise the conceptual framework mathematically and, by quantifying and visualising beliefs in higher-dimensional geometric spaces, we argue our models may help both design, analyse and explain systems. The mathematical models are based on simplicial complexes.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司