亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conformal prediction (CP) is a wrapper around traditional machine learning models, giving coverage guarantees under the sole assumption of exchangeability; in classification problems, for a chosen significance level $\varepsilon$, CP guarantees that the error rate is at most $\varepsilon$, irrespective of whether the underlying model is misspecified. However, the prohibitive computational costs of "full" CP led researchers to design scalable alternatives, which alas do not attain the same guarantees or statistical power of full CP. In this paper, we use influence functions to efficiently approximate full CP. We prove that our method is a consistent approximation of full CP, and empirically show that the approximation error becomes smaller as the training set increases; e.g., for $10^{3}$ training points the two methods output p-values that are $<10^{-3}$ apart: a negligible error for any practical application. Our methods enable scaling full CP to large real-world datasets. We compare our full CP approximation (ACP) to mainstream CP alternatives, and observe that our method is computationally competitive whilst enjoying the statistical predictive power of full CP.

相關內容

這是第25屆年度會議,討論有約束計算的所有方面,包括理論、算法、環境、語言、模型、系統和應用,如決策、資源分配、調度、配置和規劃。為了紀念25周年,吉恩·弗洛伊德創作了一本“虛擬卷”來慶祝這個系列會議。信息可以在這里找到。約束編程協會有本系列中以前的會議列表。CP 2019計劃將包括展示關于約束技術的高質量科學論文。除了通常的技術軌道外,CP 2019年會議還將有主題軌道。每個賽道都有一個專門的小組委員會,以確保有能力的評審員將審查這些領域的人提交的論文。 官網鏈接: · IM · 推斷 · INFORMS · Lipschitz ·
2023 年 2 月 7 日

We analyze to what extent final users can infer information about the level of protection of their data when the data obfuscation mechanism is a priori unknown to them (the so-called ''black-box'' scenario). In particular, we delve into the investigation of two notions of local differential privacy (LDP), namely {\epsilon}-LDP and R\'enyi LDP. On one hand, we prove that, without any assumption on the underlying distributions, it is not possible to have an algorithm able to infer the level of data protection with provable guarantees; this result also holds for the central versions of the two notions of DP considered. On the other hand, we demonstrate that, under reasonable assumptions (namely, Lipschitzness of the involved densities on a closed interval), such guarantees exist and can be achieved by a simple histogram-based estimator. We validate our results experimentally and we note that, on a particularly well-behaved distribution (namely, the Laplace noise), our method gives even better results than expected, in the sense that in practice the number of samples needed to achieve the desired confidence is smaller than the theoretical bound, and the estimation of {\epsilon} is more precise than predicted.

This work considers Gaussian process interpolation with a periodized version of the Mat{\'e}rn covariance function introduced by Stein (22, Section 6.7). Convergence rates are studied for the joint maximum likelihood estimation of the regularity and the amplitude parameters when the data is sampled according to the model. The mean integrated squared error is also analyzed with fixed and estimated parameters, showing that maximum likelihood estimation yields asymptotically the same error as if the ground truth was known. Finally, the case where the observed function is a fixed deterministic element of a Sobolev space of continuous functions is also considered, suggesting that bounding assumptions on some parameters can lead to different estimates.

The Fisher information matrix (FIM) is a key quantity in statistics as it is required for example for evaluating asymptotic precisions of parameter estimates, for computing test statistics or asymptotic distributions in statistical testing, for evaluating post model selection inference results or optimality criteria in experimental designs. However its exact computation is often not trivial. In particular in many latent variable models, it is intricated due to the presence of unobserved variables. Therefore the observed FIM is usually considered in this context to estimate the FIM. Several methods have been proposed to approximate the observed FIM when it can not be evaluated analytically. Among the most frequently used approaches are Monte-Carlo methods or iterative algorithms derived from the missing information principle. All these methods require to compute second derivatives of the complete data log-likelihood which leads to some disadvantages from a computational point of view. In this paper, we present a new approach to estimate the FIM in latent variable model. The advantage of our method is that only the first derivatives of the log-likelihood is needed, contrary to other approaches based on the observed FIM. Indeed we consider the empirical estimate of the covariance matrix of the score. We prove that this estimate of the Fisher information matrix is unbiased, consistent and asymptotically Gaussian. Moreover we highlight that none of both estimates is better than the other in terms of asymptotic covariance matrix. When the proposed estimate can not be directly analytically evaluated, we present a stochastic approximation estimation algorithm to compute it. This algorithm provides this estimate of the FIM as a by-product of the parameter estimates. We emphasize that the proposed algorithm only requires to compute the first derivatives of the complete data log-likelihood with respect to the parameters. We prove that the estimation algorithm is consistent and asymptotically Gaussian when the number of iterations goes to infinity. We evaluate the finite sample size properties of the proposed estimate and of the observed FIM through simulation studies in linear mixed effects models and mixture models. We also investigate the convergence properties of the estimation algorithm in non linear mixed effects models. We compare the performances of the proposed algorithm to those of other existing methods.

In this paper, we solve the optimal target detection problem employing the thoughts and methodologies of Shannon's information theory. Introducing a target state variable into a general radar system model, an equivalent detection channel is derived, and the a posteriori probability distribution is given accordingly. Detection information (DI) is proposed for measuring system performance, which holds for any specific detection method. Moreover, we provide an analytic expression for the false alarm probability concerning the a priori probability. In particular, for a sufficiently large observation interval, the false alarm probability equals the a priori probability of the existing state. A stochastic detection method, the sampling a posteriori probability, is also proposed. The target detection theorem is proved mathematically, which indicates that DI is an achievable theoretical limit of target detection. Specifically, when empirical DI is gained from the sampling a posteriori detection method approaches the DI, the probability of failed decisions tends to be zero. Conversely, there is no detector whose empirical DI is more than DI. Numerical simulations are performed to verify the correctness of the theorems. The results demonstrate that the maximum a posteriori and the Neyman-Pearson detection methods are upper bounded by the theoretical limit.

We consider the task of evaluating policies of algorithmic resource allocation through randomized controlled trials (RCTs). Such policies are tasked with optimizing the utilization of limited intervention resources, with the goal of maximizing the benefits derived. Evaluation of such allocation policies through RCTs proves difficult, notwithstanding the scale of the trial, because the individuals' outcomes are inextricably interlinked through resource constraints controlling the policy decisions. Our key contribution is to present a new estimator leveraging our proposed novel concept, that involves retrospective reshuffling of participants across experimental arms at the end of an RCT. We identify conditions under which such reassignments are permissible and can be leveraged to construct counterfactual trials, whose outcomes can be accurately ascertained, for free. We prove theoretically that such an estimator is more accurate than common estimators based on sample means -- we show that it returns an unbiased estimate and simultaneously reduces variance. We demonstrate the value of our approach through empirical experiments on synthetic, semi-synthetic as well as real case study data and show improved estimation accuracy across the board.

We propose the predictive forward-forward (PFF) algorithm for conducting credit assignment in neural systems. Specifically, we design a novel, dynamic recurrent neural system that learns a directed generative circuit jointly and simultaneously with a representation circuit, integrating learnable lateral competition and elements of predictive coding, an emerging and viable neurobiological process theory of cortical function, with the forward-forward (FF) adaptation scheme. Furthermore, PFF efficiently learns to propagate learning signals and updates synapses with forward passes only, eliminating key structural and computational constraints imposed by a backpropagation-based scheme. Besides computational advantages, the PFF process could prove useful for understanding the learning mechanisms behind biological neurons that use local signals despite missing feedback connections. We run experiments on image data and demonstrate that the PFF procedure works as well as backpropagation of errors, offering a promising brain-inspired learning algorithm for classifying, reconstructing, and synthesizing data patterns.

The spectral density function describes the second-order properties of a stationary stochastic process on $\mathbb{R}^d$. This paper considers the nonparametric estimation of the spectral density of a continuous-time stochastic process taking values in a separable Hilbert space. Our estimator is based on kernel smoothing and can be applied to a wide variety of spatial sampling schemes including those in which data are observed at irregular spatial locations. Thus, it finds immediate applications in Spatial Statistics, where irregularly sampled data naturally arise. The rates for the bias and variance of the estimator are obtained under general conditions in a mixed-domain asymptotic setting. When the data are observed on a regular grid, the optimal rate of the estimator matches the minimax rate for the class of covariance functions that decay according to a power law. The asymptotic normality of the spectral density estimator is also established under general conditions for Gaussian Hilbert-space valued processes. Finally, with a view towards practical applications the asymptotic results are specialized to the case of discretely-sampled functional data in a reproducing kernel Hilbert space.

We study the fundamental problem of selecting optimal features for model construction. This problem is computationally challenging on large datasets, even with the use of greedy algorithm variants. To address this challenge, we extend the adaptive query model, recently proposed for the greedy forward selection for submodular functions, to the faster paradigm of Orthogonal Matching Pursuit for non-submodular functions. The proposed algorithm achieves exponentially fast parallel run time in the adaptive query model, scaling much better than prior work. Furthermore, our extension allows the use of downward-closed constraints, which can be used to encode certain fairness criteria into the feature selection process. We prove strong approximation guarantees for the algorithm based on standard assumptions. These guarantees are applicable to many parametric models, including Generalized Linear Models. Finally, we demonstrate empirically that the proposed algorithm competes favorably with state-of-the-art techniques for feature selection, on real-world and synthetic datasets.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司