亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes an extension of Random Projection Depth (RPD) to cope with multiple modalities and non-convexity on data clouds. In the framework of the proposed method, the RPD is computed in a reproducing kernel Hilbert space. With the help of kernel principal component analysis, we expect that the proposed method can cope with the above multiple modalities and non-convexity. The experimental results demonstrate that the proposed method outperforms RPD and is comparable to other existing detection models on benchmark datasets regarding Area Under the Curves (AUCs) of Receiver Operating Characteristic (ROC).

相關內容

This paper provides norm-based generalization bounds for the Transformer architecture that do not depend on the input sequence length. We employ a covering number based approach to prove our bounds. We use three novel covering number bounds for the function class of bounded linear transformations to upper bound the Rademacher complexity of the Transformer. Furthermore, we show this generalization bound applies to the common Transformer training technique of masking and then predicting the masked word. We also run a simulated study on a sparse majority data set that empirically validates our theoretical findings.

The burdensome impact of a skewed judges-to-cases ratio on the judicial system manifests in an overwhelming backlog of pending cases alongside an ongoing influx of new ones. To tackle this issue and expedite the judicial process, the proposition of an automated system capable of suggesting case outcomes based on factual evidence and precedent from past cases gains significance. This research paper centres on developing a graph neural network-based model to address the Legal Judgment Prediction (LJP) problem, recognizing the intrinsic graph structure of judicial cases and making it a binary node classification problem. We explored various embeddings as model features, while nodes such as time nodes and judicial acts were added and pruned to evaluate the model's performance. The study is done while considering the ethical dimension of fairness in these predictions, considering gender and name biases. A link prediction task is also conducted to assess the model's proficiency in anticipating connections between two specified nodes. By harnessing the capabilities of graph neural networks and incorporating fairness analyses, this research aims to contribute insights towards streamlining the adjudication process, enhancing judicial efficiency, and fostering a more equitable legal landscape, ultimately alleviating the strain imposed by mounting case backlogs. Our best-performing model with XLNet pre-trained embeddings as its features gives the macro F1 score of 75% for the LJP task. For link prediction, the same set of features is the best performing giving ROC of more than 80%

This paper analyses a set of simple adaptations that transform standard message-passing Graph Neural Networks (GNN) into provably powerful directed multigraph neural networks. The adaptations include multigraph port numbering, ego IDs, and reverse message passing. We prove that the combination of these theoretically enables the detection of any directed subgraph pattern. To validate the effectiveness of our proposed adaptations in practice, we conduct experiments on synthetic subgraph detection tasks, which demonstrate outstanding performance with almost perfect results. Moreover, we apply our proposed adaptations to two financial crime analysis tasks. We observe dramatic improvements in detecting money laundering transactions, improving the minority-class F1 score of a standard message-passing GNN by up to 30%, and closely matching or outperforming tree-based and GNN baselines. Similarly impressive results are observed on a real-world phishing detection dataset, boosting three standard GNNs' F1 scores by around 15% and outperforming all baselines.

Bayesian hypothesis testing leverages posterior probabilities, Bayes factors, or credible intervals to assess characteristics that summarize data. We propose a framework for power curve approximation with such hypothesis tests that assumes data are generated using statistical models with fixed parameters for the purposes of sample size determination. We present a fast approach to explore the sampling distribution of posterior probabilities when the conditions for the Bernstein-von Mises theorem are satisfied. We extend that approach to facilitate targeted sampling from the approximate sampling distribution of posterior probabilities for each sample size explored. These sampling distributions are used to construct power curves for various types of posterior analyses. Our resulting method for power curve approximation is orders of magnitude faster than conventional power curve estimation for Bayesian hypothesis tests. We also prove the consistency of the corresponding power estimates and sample size recommendations under certain conditions.

This paper investigates risk bounds for quantile additive trend filtering, a method gaining increasing significance in the realms of additive trend filtering and quantile regression. We investigate the constrained version of quantile trend filtering within additive models, considering both fixed and growing input dimensions. In the fixed dimension case, we discover an error rate that mirrors the non-quantile minimax rate for additive trend filtering, featuring the main term $n^{-2r/(2r+1)}V^{2/(2r+1)}$, when the underlying quantile function is additive, with components whose $(r-1)$th derivatives are of bounded variation by $V$. In scenarios with a growing input dimension $d$, quantile additive trend filtering introduces a polynomial factor of $d^{(2r+2)/(2r+1)}$. This aligns with the non-quantile variant, featuring a linear factor $d$, particularly pronounced for larger $r$ values. Additionally, we propose a practical algorithm for implementing quantile trend filtering within additive models, using dimension-wise backfitting. We conduct experiments with evenly spaced data points or data that samples from a uniform distribution in the interval $[0,1]$, applying distinct component functions and introducing noise from normal and heavy-tailed distributions. Our findings confirm the estimator's convergence as $n$ increases and its superiority, particularly in heavy-tailed distribution scenarios. These results deepen our understanding of additive trend filtering models in quantile settings, offering valuable insights for practical applications and future research.

Variational flows allow practitioners to learn complex continuous distributions, but approximating discrete distributions remains a challenge. Current methodologies typically embed the discrete target in a continuous space - usually via continuous relaxation or dequantization - and then apply a continuous flow. These approaches involve a surrogate target that may not capture the original discrete target, might have biased or unstable gradients, and can create a difficult optimization problem. In this work, we develop a variational flow family for discrete distributions without any continuous embedding. First, we develop a measure-preserving and discrete (MAD) invertible map that leaves the discrete target invariant, and then create a mixed variational flow (MAD Mix) based on that map. Our family provides access to i.i.d. sampling and density evaluation with virtually no tuning effort. We also develop an extension to MAD Mix that handles joint discrete and continuous models. Our experiments suggest that MAD Mix produces more reliable approximations than continuous-embedding flows while being significantly faster to train.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.

北京阿比特科技有限公司