The availability of large-scale video action understanding datasets has facilitated advances in the interpretation of visual scenes containing people. However, learning to recognise human actions and their social interactions in an unconstrained real-world environment comprising numerous people, with potentially highly unbalanced and long-tailed distributed action labels from a stream of sensory data captured from a mobile robot platform remains a significant challenge, not least owing to the lack of a reflective large-scale dataset. In this paper, we introduce JRDB-Act, as an extension of the existing JRDB, which is captured by a social mobile manipulator and reflects a real distribution of human daily-life actions in a university campus environment. JRDB-Act has been densely annotated with atomic actions, comprises over 2.8M action labels, constituting a large-scale spatio-temporal action detection dataset. Each human bounding box is labeled with one pose-based action label and multiple~(optional) interaction-based action labels. Moreover JRDB-Act provides social group annotation, conducive to the task of grouping individuals based on their interactions in the scene to infer their social activities~(common activities in each social group). Each annotated label in JRDB-Act is tagged with the annotators' confidence level which contributes to the development of reliable evaluation strategies. In order to demonstrate how one can effectively utilise such annotations, we develop an end-to-end trainable pipeline to learn and infer these tasks, i.e. individual action and social group detection. The data and the evaluation code is publicly available at //jrdb.erc.monash.edu/.
Social media plays an increasing role in our communication with friends and family, and our consumption of information and entertainment. Hence, to design effective ranking functions for posts on social media, it would be useful to predict the affective response to a post (e.g., whether the user is likely to be humored, inspired, angered, informed). Similar to work on emotion recognition (which focuses on the affect of the publisher of the post), the traditional approach to recognizing affective response would involve an expensive investment in human annotation of training data. We introduce CARE$_{db}$, a dataset of 230k social media posts annotated according to 7 affective responses using the Common Affective Response Expression (CARE) method. The CARE method is a means of leveraging the signal that is present in comments that are posted in response to a post, providing high-precision evidence about the affective response of the readers to the post without human annotation. Unlike human annotation, the annotation process we describe here can be iterated upon to expand the coverage of the method, particularly for new affective responses. We present experiments that demonstrate that the CARE annotations compare favorably with crowd-sourced annotations. Finally, we use CARE$_{db}$ to train competitive BERT-based models for predicting affective response as well as emotion detection, demonstrating the utility of the dataset for related tasks.
In this paper, we introduce 'Coarse-Fine Networks', a two-stream architecture which benefits from different abstractions of temporal resolution to learn better video representations for long-term motion. Traditional Video models process inputs at one (or few) fixed temporal resolution without any dynamic frame selection. However, we argue that, processing multiple temporal resolutions of the input and doing so dynamically by learning to estimate the importance of each frame can largely improve video representations, specially in the domain of temporal activity localization. To this end, we propose (1) `Grid Pool', a learned temporal downsampling layer to extract coarse features, and, (2) `Multi-stage Fusion', a spatio-temporal attention mechanism to fuse a fine-grained context with the coarse features. We show that our method can outperform the state-of-the-arts for action detection in public datasets including Charades with a significantly reduced compute and memory footprint.
Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent's actions can bring about myriad changes in the scene. These changes can be observable, such as movements, manipulations, and transformations of the objects in the scene -- these are reflected in conventional video captioning. However, unlike images, actions in videos are also inherently linked to social and commonsense aspects such as intentions (why the action is taking place), attributes (such as who is doing the action, on whom, where, using what etc.) and effects (how the world changes due to the action, the effect of the action on other agents). Thus for video understanding, such as when captioning videos or when answering question about videos, one must have an understanding of these commonsense aspects. We present the first work on generating \textit{commonsense} captions directly from videos, in order to describe latent aspects such as intentions, attributes, and effects. We present a new dataset "Video-to-Commonsense (V2C)" that contains 9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. We finetune our commonsense generation models on the V2C-QA task where we ask questions about the latent aspects in the video. Both the generation task and the QA task can be used to enrich video captions.
Scene graph construction / visual relationship detection from an image aims to give a precise structural description of the objects (nodes) and their relationships (edges). The mutual promotion of object detection and relationship detection is important for enhancing their individual performance. In this work, we propose a new framework, called semantics guided graph relation neural network (SGRN), for effective visual relationship detection. First, to boost the object detection accuracy, we introduce a source-target class cognoscitive transformation that transforms the features of the co-occurent objects to the target object domain to refine the visual features. Similarly, source-target cognoscitive transformations are used to refine features of objects from features of relations, and vice versa. Second, to boost the relation detection accuracy, besides the visual features of the paired objects, we embed the class probability of the object and subject separately to provide high level semantic information. In addition, to reduce the search space of relationships, we design a semantics-aware relationship filter to exclude those object pairs that have no relation. We evaluate our approach on the Visual Genome dataset and it achieves the state-of-the-art performance for visual relationship detection. Additionally, Our approach also significantly improves the object detection performance (i.e. 4.2\% in mAP accuracy).
We present a novel framework for the automatic discovery and recognition of motion primitives in videos of human activities. Given the 3D pose of a human in a video, human motion primitives are discovered by optimizing the `motion flux', a quantity which captures the motion variation of a group of skeletal joints. A normalization of the primitives is proposed in order to make them invariant with respect to a subject anatomical variations and data sampling rate. The discovered primitives are unknown and unlabeled and are unsupervisedly collected into classes via a hierarchical non-parametric Bayes mixture model. Once classes are determined and labeled they are further analyzed for establishing models for recognizing discovered primitives. Each primitive model is defined by a set of learned parameters. Given new video data and given the estimated pose of the subject appearing on the video, the motion is segmented into primitives, which are recognized with a probability given according to the parameters of the learned models. Using our framework we build a publicly available dataset of human motion primitives, using sequences taken from well-known motion capture datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields including video analysis, human inspired motion generation, learning by demonstration, intuitive human-robot interaction, and human behavior analysis.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources
In this paper, we introduce a challenging new dataset, MLB-YouTube, designed for fine-grained activity detection. The dataset contains two settings: segmented video classification as well as activity detection in continuous videos. We experimentally compare various recognition approaches capturing temporal structure in activity videos, by classifying segmented videos and extending those approaches to continuous videos. We also compare models on the extremely difficult task of predicting pitch speed and pitch type from broadcast baseball videos. We find that learning temporal structure is valuable for fine-grained activity recognition.
Accelerated by the tremendous increase in Internet bandwidth and storage space, video data has been generated, published and spread explosively, becoming an indispensable part of today's big data. In this paper, we focus on reviewing two lines of research aiming to stimulate the comprehension of videos with deep learning: video classification and video captioning. While video classification concentrates on automatically labeling video clips based on their semantic contents like human actions or complex events, video captioning attempts to generate a complete and natural sentence, enriching the single label as in video classification, to capture the most informative dynamics in videos. In addition, we also provide a review of popular benchmarks and competitions, which are critical for evaluating the technical progress of this vibrant field.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.
We introduce Spatial-Temporal Memory Networks (STMN) for video object detection. At its core, we propose a novel Spatial-Temporal Memory module (STMM) as the recurrent computation unit to model long-term temporal appearance and motion dynamics. The STMM's design enables the integration of ImageNet pre-trained backbone CNN weights for both the feature stack as well as the prediction head, which we find to be critical for accurate detection. Furthermore, in order to tackle object motion in videos, we propose a novel MatchTrans module to align the spatial-temporal memory from frame to frame. We compare our method to state-of-the-art detectors on ImageNet VID, and conduct ablative studies to dissect the contribution of our different design choices. We obtain state-of-the-art results with the VGG backbone, and competitive results with the ResNet backbone. To our knowledge, this is the first video object detector that is equipped with an explicit memory mechanism to model long-term temporal dynamics.