亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Positron Emission Tomography (PET) is a vital imaging modality widely used in clinical diagnosis and preclinical research but faces limitations in image resolution and signal-to-noise ratio due to inherent physical degradation factors. Current deep learning-based denoising methods face challenges in adapting to the variability of clinical settings, influenced by factors such as scanner types, tracer choices, dose levels, and acquisition times. In this work, we proposed a novel 3D ControlNet-based denoising method for whole-body PET imaging. We first pre-trained a 3D Denoising Diffusion Probabilistic Model (DDPM) using a large dataset of high-quality normal-dose PET images. Following this, we fine-tuned the model on a smaller set of paired low- and normal-dose PET images, integrating low-dose inputs through a 3D ControlNet architecture, thereby making the model adaptable to denoising tasks in diverse clinical settings. Experimental results based on clinical PET datasets show that the proposed framework outperformed other state-of-the-art PET image denoising methods both in visual quality and quantitative metrics. This plug-and-play approach allows large diffusion models to be fine-tuned and adapted to PET images from diverse acquisition protocols.

相關內容

Focused ultrasound (FUS) therapy is a promising tool for optimally targeted treatment of spinal cord injuries (SCI), offering submillimeter precision to enhance blood flow at injury sites while minimizing impact on surrounding tissues. However, its efficacy is highly sensitive to the placement of the ultrasound source, as the spinal cord's complex geometry and acoustic heterogeneity distort and attenuate the FUS signal. Current approaches rely on computer simulations to solve the governing wave propagation equations and compute patient-specific pressure maps using ultrasound images of the spinal cord anatomy. While accurate, these high-fidelity simulations are computationally intensive, taking up to hours to complete parameter sweeps, which is impractical for real-time surgical decision-making. To address this bottleneck, we propose a convolutional deep operator network (DeepONet) to rapidly predict FUS pressure fields in patient spinal cords. Unlike conventional neural networks, DeepONets are well equipped to approximate the solution operator of the parametric partial differential equations (PDEs) that govern the behavior of FUS waves with varying initial and boundary conditions (i.e., new transducer locations or spinal cord geometries) without requiring extensive simulations. Trained on simulated pressure maps across diverse patient anatomies, this surrogate model achieves real-time predictions with only a 2% loss on the test set, significantly accelerating the modeling of nonlinear physical systems in heterogeneous domains. By facilitating rapid parameter sweeps in surgical settings, this work provides a crucial step toward precise and individualized solutions in neurosurgical treatments.

Remaining Useful Life (RUL) of a component or a system is defined as the length from the current time to the end of the useful life. Accurate RUL estimation plays a crucial role in Predictive Maintenance applications. Traditional regression methods, both linear and non-linear, have struggled to achieve high accuracy in this domain. While Convolutional Neural Networks (CNNs) have shown improved accuracy, they often overlook the sequential nature of the data, relying instead on features derived from sliding windows. Since RUL prediction inherently involves multivariate time series analysis, robust sequence learning is essential. In this work, we propose a hybrid approach combining Convolutional Neural Networks with Long Short-Term Memory (LSTM) networks for RUL estimation. Although CNN-based LSTM models have been applied to sequence prediction tasks in financial forecasting, this is the first attempt to adopt this approach for RUL estimation in prognostics. In this approach, CNN is first employed to efficiently extract features from the data, followed by LSTM, which uses these extracted features to predict RUL. This method effectively leverages sensor sequence information, uncovering hidden patterns within the data, even under multiple operating conditions and fault scenarios. Our results demonstrate that the hybrid CNN-LSTM model achieves the highest accuracy, offering a superior score compared to the other methods.

Temporal Knowledge Graph Reasoning (TKGR) is the process of utilizing temporal information to capture complex relations within a Temporal Knowledge Graph (TKG) to infer new knowledge. Conventional methods in TKGR typically depend on deep learning algorithms or temporal logical rules. However, deep learning-based TKGRs often lack interpretability, whereas rule-based TKGRs struggle to effectively learn temporal rules that capture temporal patterns. Recently, Large Language Models (LLMs) have demonstrated extensive knowledge and remarkable proficiency in temporal reasoning. Consequently, the employment of LLMs for Temporal Knowledge Graph Reasoning (TKGR) has sparked increasing interest among researchers. Nonetheless, LLMs are known to function as black boxes, making it challenging to comprehend their reasoning process. Additionally, due to the resource-intensive nature of fine-tuning, promptly updating LLMs to integrate evolving knowledge within TKGs for reasoning is impractical. To address these challenges, in this paper, we propose a Large Language Models-guided Dynamic Adaptation (LLM-DA) method for reasoning on TKGs. Specifically, LLM-DA harnesses the capabilities of LLMs to analyze historical data and extract temporal logical rules. These rules unveil temporal patterns and facilitate interpretable reasoning. To account for the evolving nature of TKGs, a dynamic adaptation strategy is proposed to update the LLM-generated rules with the latest events. This ensures that the extracted rules always incorporate the most recent knowledge and better generalize to the predictions on future events. Experimental results show that without the need of fine-tuning, LLM-DA significantly improves the accuracy of reasoning over several common datasets, providing a robust framework for TKGR tasks.

The use of Large Language Models (LLMs) in mathematical reasoning has become a cornerstone of related research, demonstrating the intelligence of these models and enabling potential practical applications through their advanced performance, such as in educational settings. Despite the variety of datasets and in-context learning algorithms designed to improve the ability of LLMs to automate mathematical problem solving, the lack of comprehensive benchmarking across different datasets makes it complicated to select an appropriate model for specific tasks. In this project, we present a benchmark that fairly compares seven state-of-the-art in-context learning algorithms for mathematical problem solving across five widely used mathematical datasets on four powerful foundation models. Furthermore, we explore the trade-off between efficiency and performance, highlighting the practical applications of LLMs for mathematical reasoning. Our results indicate that larger foundation models like GPT-4o and LLaMA 3-70B can solve mathematical reasoning independently from the concrete prompting strategy, while for smaller models the in-context learning approach significantly influences the performance. Moreover, the optimal prompt depends on the chosen foundation model. We open-source our benchmark code to support the integration of additional models in future research.

In causal inference, treatment effects are typically estimated under the ignorability, or unconfoundedness, assumption, which is often unrealistic in observational data. By relaxing this assumption and conducting a sensitivity analysis, we introduce novel bounds and derive confidence intervals for the Average Potential Outcome (APO) - a standard metric for evaluating continuous-valued treatment or exposure effects. We demonstrate that these bounds are sharp under a continuous sensitivity model, in the sense that they give the smallest possible interval under this model, and propose a doubly robust version of our estimators. In a comparative analysis with the method of Jesson et al. (2022) (arXiv:2204.10022), using both simulated and real datasets, we show that our approach not only yields sharper bounds but also achieves good coverage of the true APO, with significantly reduced computation times.

One of the goals of personalized medicine is to tailor diagnostics to individual patients. Diagnostics are performed in practice by measuring quantities, called biomarkers, that indicate the existence and progress of a disease. In common cardiovascular diseases, such as hypertension, biomarkers that are closely related to the clinical representation of a patient can be predicted using computational models. Personalizing computational models translates to considering patient-specific flow conditions, for example, the compliance of blood vessels that cannot be a priori known and quantities such as the patient geometry that can be measured using imaging. Therefore, a patient is identified by a set of measurable and nonmeasurable parameters needed to well-define a computational model; else, the computational model is not personalized, meaning it is prone to large prediction errors. Therefore, to personalize a computational model, sufficient information needs to be extracted from the data. The current methods by which this is done are either inefficient, due to relying on slow-converging optimization methods, or hard to interpret, due to using `black box` deep-learning algorithms. We propose a personalized diagnostic procedure based on a differentiable 0D-1D Navier-Stokes reduced order model solver and fast parameter inference methods that take advantage of gradients through the solver. By providing a faster method for performing parameter inference and sensitivity analysis through differentiability while maintaining the interpretability of well-understood mathematical models and numerical methods, the best of both worlds is combined. The performance of the proposed solver is validated against a well-established process on different geometries, and different parameter inference processes are successfully performed.

Causal inference is an imperative foundation for decision-making across domains, such as smart health, AI for drug discovery and AIOps. Traditional statistical causal discovery methods, while well-established, predominantly rely on observational data and often overlook the semantic cues inherent in cause-and-effect relationships. The advent of Large Language Models (LLMs) has ushered in an affordable way of leveraging the semantic cues for knowledge-driven causal discovery, but the development of LLMs for causal discovery lags behind other areas, particularly in the exploration of multi-modality data. To bridge the gap, we introduce MATMCD, a multi-agent system powered by tool-augmented LLMs. MATMCD has two key agents: a Data Augmentation agent that retrieves and processes modality-augmented data, and a Causal Constraint agent that integrates multi-modal data for knowledge-driven inference. Delicate design of the inner-workings ensures successful cooperation of the agents. Our empirical study across seven datasets suggests the significant potential of multi-modality enhanced causal discovery.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Clinical Named Entity Recognition (CNER) aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other Natural Language Processing (NLP) tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets. However, these data-driven methods typically lack the capability of processing rare or unseen entities. Previous statistical methods and feature engineering practice have demonstrated that human knowledge can provide valuable information for handling rare and unseen cases. In this paper, we address the problem by incorporating dictionaries into deep neural networks for the Chinese CNER task. Two different architectures that extend the Bi-directional Long Short-Term Memory (Bi-LSTM) neural network and five different feature representation schemes are proposed to handle the task. Computational results on the CCKS-2017 Task 2 benchmark dataset show that the proposed method achieves the highly competitive performance compared with the state-of-the-art deep learning methods.

Semantic Role Labeling (SRL) is believed to be a crucial step towards natural language understanding and has been widely studied. Recent years, end-to-end SRL with recurrent neural networks (RNN) has gained increasing attention. However, it remains a major challenge for RNNs to handle structural information and long range dependencies. In this paper, we present a simple and effective architecture for SRL which aims to address these problems. Our model is based on self-attention which can directly capture the relationships between two tokens regardless of their distance. Our single model achieves F$_1=83.4$ on the CoNLL-2005 shared task dataset and F$_1=82.7$ on the CoNLL-2012 shared task dataset, which outperforms the previous state-of-the-art results by $1.8$ and $1.0$ F$_1$ score respectively. Besides, our model is computationally efficient, and the parsing speed is 50K tokens per second on a single Titan X GPU.

北京阿比特科技有限公司