An approach to optimal actuator design based on shape and topology optimisation techniques is presented. For linear diffusion equations, two scenarios are considered. For the first one, best actuators are determined depending on a given initial condition. In the second scenario, optimal actuators are determined based on all initial conditions not exceeding a chosen norm. Shape and topological sensitivities of these cost functionals are determined. A numerical algorithm for optimal actuator design based on the sensitivities and a level-set method is presented. Numerical results support the proposed methodology.
We consider a distributed optimal control problem subject to a parabolic evolution equation as constraint. The control will be considered in the energy norm of the anisotropic Sobolev space $[H_{0;,0}^{1,1/2}(Q)]^\ast$, such that the state equation of the partial differential equation defines an isomorphism onto $H^{1,1/2}_{0;0,}(Q)$. Thus, we can eliminate the control from the tracking type functional to be minimized, to derive the optimality system in order to determine the state. Since the appearing operator induces an equivalent norm in $H_{0;0,}^{1,1/2}(Q)$, we will replace it by a computable realization of the anisotropic Sobolev norm, using a modified Hilbert transformation. We are then able to link the cost or regularization parameter $\varrho>0$ to the distance of the state and the desired target, solely depending on the regularity of the target. For a conforming space-time finite element discretization, this behavior carries over to the discrete setting, leading to an optimal choice $\varrho = h_x^2$ of the regularization parameter $\varrho$ to the spatial finite element mesh size $h_x$. Using a space-time tensor product mesh, error estimates for the distance of the computable state to the desired target are derived. The main advantage of this new approach is, that applying sparse factorization techniques, a solver of optimal, i.e., almost linear, complexity is proposed and analyzed. The theoretical results are complemented by numerical examples, including discontinuous and less regular targets. Moreover, this approach can be applied also to optimal control problems subject to non-linear state equations.
We propose a data-driven, closure model for Reynolds-averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty. The proposed closure consists of two parts. A parametric one, which utilizes previously proposed, neural-network-based tensor basis functions dependent on the rate of strain and rotation tensor invariants. This is complemented by latent, random variables which account for aleatoric model errors. A fully Bayesian formulation is proposed, combined with a sparsity-inducing prior in order to identify regions in the problem domain where the parametric closure is insufficient and where stochastic corrections to the Reynolds stress tensor are needed. Training is performed using sparse, indirect data, such as mean velocities and pressures, in contrast to the majority of alternatives that require direct Reynolds stress data. For inference and learning, a Stochastic Variational Inference scheme is employed, which is based on Monte Carlo estimates of the pertinent objective in conjunction with the reparametrization trick. This necessitates derivatives of the output of the RANS solver, for which we developed an adjoint-based formulation. In this manner, the parametric sensitivities from the differentiable solver can be combined with the built-in, automatic differentiation capability of the neural network library in order to enable an end-to-end differentiable framework. We demonstrate the capability of the proposed model to produce accurate, probabilistic, predictive estimates for all flow quantities, even in regions where model errors are present, on a separated flow in the backward-facing step benchmark problem.
The accuracy of the underlying model predictions is crucial for the success of model predictive control (MPC) applications. If the model is unable to accurately analyze the dynamics of the controlled system, the performance and stability guarantees provided by MPC may not be achieved. Learning-based MPC can learn models from data, improving the applicability and reliability of MPC. This study develops a nonlinear sparse variational Bayesian learning based MPC (NSVB-MPC) for nonlinear systems, where the model is learned by the developed NSVB method. Variational inference is used by NSVB-MPC to assess the predictive accuracy and make the necessary corrections to quantify system uncertainty. The suggested approach ensures input-to-state (ISS) and the feasibility of recursive constraints in accordance with the concept of an invariant terminal region. Finally, a PEMFC temperature control model experiment confirms the effectiveness of the NSVB-MPC method.
Generalization to new samples is a fundamental rationale for statistical modeling. For this purpose, model validation is particularly important, but recent work in survey inference has suggested that simple aggregation of individual prediction scores does not give a good measure of the score for population aggregate estimates. In this manuscript we explain why this occurs, propose two scoring metrics designed specifically for this problem, and demonstrate their use in three different ways. We show that these scoring metrics correctly order models when compared to the true score, although they do underestimate the magnitude of the score. We demonstrate with a problem in survey research, where multilevel regression and poststratification (MRP) has been used extensively to adjust convenience and low-response surveys to make population and subpopulation estimates.
We propose a multivariate extension of the Lorenz curve based on multivariate rearrangements of optimal transport theory. We define a vector Lorenz map as the integral of the vector quantile map associated with a multivariate resource allocation. Each component of the Lorenz map is the cumulative share of each resource, as in the traditional univariate case. The pointwise ordering of such Lorenz maps defines a new multivariate majorization order, which is equivalent to preference by any social planner with inequality averse multivariate rank dependent social evaluation functional. We define a family of multi-attribute Gini index and complete ordering based on the Lorenz map. We propose the level sets of an Inverse Lorenz Function as a practical tool to visualize and compare inequality in two dimensions, and apply it to income-wealth inequality in the United States between 1989 and 2022.
We devise greedy heuristics tailored for synthesizing quantum circuits that implement a specified set of Pauli rotations. Our heuristics are designed to minimize either the count of entangling gates or the depth of entangling gates, and they can be adjusted to either maintain or loosen the ordering of rotations. We present benchmark results demonstrating a depth reduction of up to a factor of 4 compared to the current state-of-the-art heuristics for synthesizing Hamiltonian simulation circuits. We also show that these heuristics can be used to optimize generic quantum circuits by decomposing and resynthesizing them.
Successfully addressing a wide variety of tasks is a core ability of autonomous agents, requiring flexibly adapting the underlying decision-making strategies and, as we argue in this work, also adapting the perception modules. An analogical argument would be the human visual system, which uses top-down signals to focus attention determined by the current task. Similarly, we adapt pre-trained large vision models conditioned on specific downstream tasks in the context of multi-task policy learning. We introduce task-conditioned adapters that do not require finetuning any pre-trained weights, combined with a single policy trained with behavior cloning and capable of addressing multiple tasks. We condition the visual adapters on task embeddings, which can be selected at inference if the task is known, or alternatively inferred from a set of example demonstrations. To this end, we propose a new optimization-based estimator. We evaluate the method on a wide variety of tasks from the CortexBench benchmark and show that, compared to existing work, it can be addressed with a single policy. In particular, we demonstrate that adapting visual features is a key design choice and that the method generalizes to unseen tasks given a few demonstrations.
We consider the computation of model-free bounds for multi-asset options in a setting that combines dependence uncertainty with additional information on the dependence structure. More specifically, we consider the setting where the marginal distributions are known and partial information, in the form of known prices for multi-asset options, is also available in the market. We provide a fundamental theorem of asset pricing in this setting, as well as a superhedging duality that allows to transform the maximization problem over probability measures in a more tractable minimization problem over trading strategies. The latter is solved using a penalization approach combined with a deep learning approximation using artificial neural networks. The numerical method is fast and the computational time scales linearly with respect to the number of traded assets. We finally examine the significance of various pieces of additional information. Empirical evidence suggests that "relevant" information, i.e. prices of derivatives with the same payoff structure as the target payoff, are more useful that other information, and should be prioritized in view of the trade-off between accuracy and computational efficiency.
Progress in the realm of quantum technologies is paving the way for a multitude of potential applications across different sectors. However, the reduced number of available quantum computers, their technical limitations and the high demand for their use are posing some problems for developers and researchers. Mainly, users trying to execute quantum circuits on these devices are usually facing long waiting times in the tasks queues. In this context, this work propose a technique to reduce waiting times and optimize quantum computers usage by scheduling circuits from different users into combined circuits that are executed at the same time. To validate this proposal, different widely known quantum algorithms have been selected and executed in combined circuits. The obtained results are then compared with the results of executing the same algorithms in an isolated way. This allowed us to measure the impact of the use of the scheduler. Among the obtained results, it has been possible to verify that the noise suffered by executing a combination of circuits through the proposed scheduler does not critically affect the outcomes.
Evaluations of model editing currently only use the `next few token' completions after a prompt. As a result, the impact of these methods on longer natural language generation is largely unknown. We introduce long-form evaluation of model editing (LEME) a novel evaluation protocol that measures the efficacy and impact of model editing in long-form generative settings. Our protocol consists of a machine-rated survey and a classifier which correlates well with human ratings. Importantly, we find that our protocol has very little relationship with previous short-form metrics (despite being designed to extend efficacy, generalization, locality, and portability into a long-form setting), indicating that our method introduces a novel set of dimensions for understanding model editing methods. Using this protocol, we benchmark a number of model editing techniques and present several findings including that, while some methods (ROME and MEMIT) perform well in making consistent edits within a limited scope, they suffer much more from factual drift than other methods. Finally, we present a qualitative analysis that illustrates common failure modes in long-form generative settings including internal consistency, lexical cohesion, and locality issues.