Multi-tenancy is essential for unleashing SmartNIC's potential in datacenters. Our systematic analysis in this work shows that existing on-path SmartNICs have resource multiplexing limitations. For example, existing solutions lack multi-tenancy capabilities such as performance isolation and QoS provisioning for compute and IO resources. Compared to standard NIC data paths with a well-defined set of offloaded functions, unpredictable execution times of SmartNIC kernels make conventional approaches for multi-tenancy and QoS insufficient. We fill this gap with OSMOSIS, a SmartNICs resource manager co-design. OSMOSIS extends existing OS mechanisms to enable dynamic hardware resource multiplexing of the on-path packet processing data plane. We integrate OSMOSIS within an open-source RISC-V-based 400Gbit/s SmartNIC. Our performance results demonstrate that OSMOSIS fully supports multi-tenancy and enables broader adoption of SmartNICs in datacenters with low overhead.
This paper introduces RobotCycle, a novel ongoing project that leverages Autonomous Vehicle (AV) research to investigate how road infrastructure influences cyclist behaviour and safety during real-world journeys. The project's requirements were defined in collaboration with key stakeholders, including city planners, cyclists, and policymakers, informing the design of risk and safety metrics and the data collection criteria. We propose a data-driven approach relying on a novel, rich dataset of diverse traffic scenes and scenarios captured using a custom-designed wearable sensing unit. By analysing road-user trajectories, we identify normal path deviations indicating potential risks or hazardous interactions related to infrastructure elements in the environment. Our analysis correlates driving profiles and trajectory patterns with local road segments, driving conditions, and road-user interactions to predict traffic behaviours and identify critical scenarios. Moreover, by leveraging advancements in AV research, the project generates detailed 3D High-Definition Maps (HD Maps), traffic flow patterns, and trajectory models to provide a comprehensive assessment and analysis of the behaviour of all traffic agents. These data can then inform the design of cyclist-friendly road infrastructure, ultimately enhancing road safety and cyclability. The project provides valuable insights for enhancing cyclist protection and advancing sustainable urban mobility.
The success of many RL techniques heavily relies on human-engineered dense rewards, which typically demand substantial domain expertise and extensive trial and error. In our work, we propose DrS (Dense reward learning from Stages), a novel approach for learning reusable dense rewards for multi-stage tasks in a data-driven manner. By leveraging the stage structures of the task, DrS learns a high-quality dense reward from sparse rewards and demonstrations if given. The learned rewards can be \textit{reused} in unseen tasks, thus reducing the human effort for reward engineering. Extensive experiments on three physical robot manipulation task families with 1000+ task variants demonstrate that our learned rewards can be reused in unseen tasks, resulting in improved performance and sample efficiency of RL algorithms. The learned rewards even achieve comparable performance to human-engineered rewards on some tasks. See our project page (//sites.google.com/view/iclr24drs) for more details.
Data curation tasks that prepare data for analytics are critical for turning data into actionable insights. However, due to the diverse requirements of applications in different domains, generic off-the-shelf tools are typically insufficient. As a result, data scientists often have to develop domain-specific solutions tailored to both the dataset and the task, e.g. writing domain-specific code or training machine learning models on a sufficient number of annotated examples. This process is notoriously difficult and time-consuming. We present SEED, an LLM-as-compiler approach that automatically generates domain-specific data curation solutions via Large Language Models (LLMs). Once the user describes a task, input data, and expected output, the SEED compiler produces a hybrid pipeline that combines LLM querying with more cost-effective alternatives, such as vector-based caching, LLM-generated code, and small models trained on LLM-annotated data. SEED features an optimizer that automatically selects from the four LLM-assisted modules and forms a hybrid execution pipeline that best fits the task at hand. To validate this new, revolutionary approach, we conducted experiments on $9$ datasets spanning over $5$ data curation tasks. In comparison to solutions that use the LLM on every data record, SEED achieves state-of-the-art or comparable few-shot performance, while significantly reducing the number of LLM calls.
We consider a Multi-Agent Path Finding (MAPF) setting where agents have been assigned a plan, but during its execution some agents are delayed. Instead of replanning from scratch when such a delay occurs, we propose delay introduction, whereby we delay some additional agents so that the remainder of the plan can be executed safely. We show that finding the minimum number of additional delays is APX-Hard, i.e., it is NP-Hard to find a $(1+\varepsilon)$-approximation for some $\varepsilon>0$. However, in practice we can find optimal delay-introductions using Conflict-Based Search for very large numbers of agents, and both planning time and the resulting length of the plan are comparable, and sometimes outperform the state-of-the-art heuristics for replanning.
Quantum computers have evolved from the theoretical realm into a race to large-scale implementations. This is due to the promise of revolutionary speedups, where achieving such speedup requires designing an algorithm that harnesses the structure of a problem using quantum mechanics. Yet many quantum programming languages today require programmers to reason at a low level of quantum gate circuitry. This presents a significant barrier to entry for programmers who have not yet built up an intuition about quantum gate semantics, and it can prove to be tedious even for those who have. In this paper, we present Qwerty, a new quantum programming language that allows programmers to manipulate qubits more expressively than gates, relegating the tedious task of gate selection to the compiler. Due to its novel basis type and easy interoperability with Python, Qwerty is a powerful framework for high-level quantum-classical computation.
Data profilers play a crucial role in the preprocessing phase of data analysis by identifying quality issues such as missing, extreme, or erroneous values. Traditionally, profilers have relied solely on statistical methods, which lead to high false positives and false negatives. For example, they may incorrectly flag missing values where such absences are expected and normal based on the data's semantic context. To address these, we introduce Cocoon, a data profiling system that integrates LLMs to imbue statistical profiling with semantics. Cocoon enhances traditional profiling methods by adding a three-step process: Semantic Context, Semantic Profile, and Semantic Review. Our user studies show that Cocoon is highly effective at accurately discerning whether anomalies are genuine errors requiring correction or acceptable variations based on the semantics for real-world datasets.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.