亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An operator-splitting finite element scheme for the time-dependent, high-dimensional radiative transfer equation is presented in this paper. The streamline upwind Petrov-Galerkin finite element method and discontinuous Galerkin finite element method are used for the spatial-angular discretization of the radiative transfer equation, whereas the implicit backward Euler scheme is used for temporal discretization. Error analysis of the proposed numerical scheme for the fully discrete radiative transfer equation is presented. The stability and convergence estimates for the fully discrete problem are derived. Moreover, an operator-splitting algorithm for numerical simulation of high-dimensional equations is also presented. The validation of the derived estimates and implementation is demonstrated with appropriate numerical experiments.

相關內容

This paper is concerned with a numerical solution to the scattering of a time-harmonic electromagnetic wave by a bounded and impenetrable obstacle in three dimensions. The electromagnetic wave propagation is modeled by a boundary value problem of Maxwell's equations in the exterior domain of the obstacle. Based on the Dirichlet-to-Neumann (DtN) operator, which is defined by an infinite series, an exact transparent boundary condition is introduced and the scattering problem is reduced equivalently into a bounded domain. An a posteriori error estimate based adaptive finite element DtN method is developed to solve the discrete variational problem, where the DtN operator is truncated into a sum of finitely many terms. The a posteriori error estimate takes into account both the finite element approximation error and the truncation error of the DtN operator. The latter is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to illustrate the effectiveness of the proposed method.

The scope of this paper is the analysis and approximation of an optimal control problem related to the Allen-Cahn equation. A tracking functional is minimized subject to the Allen-Cahn equation using distributed controls that satisfy point-wise control constraints. First and second order necessary and sufficient conditions are proved. The lowest order discontinuous Galerkin - in time - scheme is considered for the approximation of the control to state and adjoint state mappings. Under a suitable restriction on maximum size of the temporal and spatial discretization parameters $k$, $h$ respectively in terms of the parameter $\epsilon$ that describes the thickness of the interface layer, a-priori estimates are proved with constants depending polynomially upon $1/ \epsilon$. Unlike to previous works for the uncontrolled Allen-Cahn problem our approach does not rely on a construction of an approximation of the spectral estimate, and as a consequence our estimates are valid under low regularity assumptions imposed by the optimal control setting. These estimates are also valid in cases where the solution and its discrete approximation do not satisfy uniform space-time bounds independent of $\epsilon$. These estimates and a suitable localization technique, via the second order condition (see \cite{Arada-Casas-Troltzsch_2002,Casas-Mateos-Troltzsch_2005,Casas-Raymond_2006,Casas-Mateos-Raymond_2007}), allows to prove error estimates for the difference between local optimal controls and their discrete approximation as well as between the associated state and adjoint state variables and their discrete approximations

The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesised with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to compensate for model error. This work presents a new theoretical analysis of the statistical finite element method demonstrating that it has similar convergence properties to the finite element method on which it is based. Our results constitute a bound on the Wasserstein-2 distance between the ideal prior and posterior and the StatFEM approximation thereof, and show that this distance converges at the same mesh-dependent rate as finite element solutions converge to the true solution. Several numerical examples are presented to demonstrate our theory, including an example which test the robustness of StatFEM when extended to nonlinear quantities of interest.

This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal H\"older continuity of the spatial semi-discrete numerical solution.

T. Borrvall and J. Petersson [Topology optimization of fluids in Stokes flow, International Journal for Numerical Methods in Fluids 41 (1) (2003) 77--107] developed the first model for topology optimization of fluids in Stokes flow. They proved the existence of minimizers in the infinite-dimensional setting and showed that a suitably chosen finite element method will converge in a weak(-*) sense to an unspecified solution. In this work, we prove novel regularity results and extend their numerical analysis. In particular, given an isolated local minimizer to the infinite-dimensional problem, we show that there exists a sequence of finite element solutions, satisfying necessary first-order optimality conditions, that strongly converges to it. We also provide the first numerical investigation into convergence rates.

We present a parametric family of semi-implicit second order accurate numerical methods for non-conservative and conservative advection equation for which the numerical solutions can be obtained in a fixed number of forward and backward alternating substitutions. The methods use a novel combination of implicit and explicit time discretizations for one-dimensional case and the Strang splitting method in several dimensional case. The methods are described for advection equations with a continuous variable velocity that can change its sign inside of computational domain. The methods are unconditionally stable in the non-conservative case for variable velocity and for variable numerical parameter. Several numerical experiments confirm the advantages of presented methods including an involvement of differential programming to find optimized values of the variable numerical parameter.

The immersed boundary (IB) method is a non-body conforming approach to fluid-structure interaction (FSI) that uses an Eulerian description of the momentum, viscosity, and incompressibility of a coupled fluid-structure system and a Lagrangian description of the deformations, stresses, and resultant forces of the immersed structure. Integral transforms with Dirac delta function kernels couple the Eulerian and Lagrangian variables, and in practice, discretizations of these integral transforms use regularized delta function kernels. Many different kernel functions have been proposed, but prior numerical work investigating the impact of the choice of kernel function on the accuracy of the methodology has been limited. This work systematically studies the effect of the choice of regularized delta function in several FSI benchmark tests using the immersed finite element/difference (IFED) method, which is an extension of the IB method that uses a finite element structural discretizations combined with a Cartesian grid finite difference method for the incompressible Navier-Stokes equations. The IFED formulation evaluates the regularized delta function on a collection of interaction points that can be chosen to be denser than the nodes of the Lagrangian mesh, and this study investigates the effect of varying the relative mesh widths of the Lagrangian and Eulerian discretizations. Our results indicate that kernels satisfying a commonly imposed even-odd condition require higher resolution to achieve similar accuracy as kernels that do not satisfy. We also find that narrower kernels are more robust and that structural meshes that are substantially coarser than the Cartesian grid can yield high accuracy for shear-dominated cases but not for cases with large normal forces. We verify our results in a large-scale FSI model of a bovine pericardial bioprosthetic heart valve in a pulse duplicator.

An 11-dimensional family of embedded (4, 5) pairs of explicit 9-stage Runge-Kutta methods with an interpolant of order 5 is derived. Two optimized for efficiency pairs are presented.

We propose a new discretization method for PDEs on moving domains in the setting of unfitted finite element methods, which is provably higher-order accurate in space and time. In the considered setting, the physical domain that evolves essentially arbitrarily through a time-independent computational background domain, is represented by a level set function. For the time discretization, the application of standard time stepping schemes that are based on finite difference approximations of the time derivative is not directly possible, as the degrees of freedom may get active or inactive across such a finite difference stencil in time. In [Lehrenfeld, Olshanskii. An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: M2AN, 53:585--614, 2019] this problem is overcome by extending the discrete solution at every timestep to a sufficiently large neighborhood so that all the degrees of freedom that are relevant at the next time step stay active. But that paper focuses on low-order methods. We advance these results with introducing and analyzing realizable techniques for the extension to higher order. To obtain higher-order convergence in space and time, we combine the BDF time stepping with the isoparametric unfitted FEM. The latter has been used and analyzed for several stationary problems before. However, for moving domains the key ingredient in the method, the transformation of the underlying mesh, becomes time-dependent which gives rise to some technical issues. We treat these with special care, carry out an a priori error analysis and two numerical experiments.

Learning mapping between two function spaces has attracted considerable research attention. However, learning the solution operator of partial differential equations (PDEs) remains a challenge in scientific computing. Therefore, in this study, we propose a novel pseudo-differential integral operator (PDIO) inspired by a pseudo-differential operator, which is a generalization of a differential operator and characterized by a certain symbol. We parameterize the symbol by using a neural network and show that the neural-network-based symbol is contained in a smooth symbol class. Subsequently, we prove that the PDIO is a bounded linear operator, and thus is continuous in the Sobolev space. We combine the PDIO with the neural operator to develop a pseudo-differential neural operator (PDNO) to learn the nonlinear solution operator of PDEs. We experimentally validate the effectiveness of the proposed model by using Burgers' equation, Darcy flow, and the Navier-Stokes equation. The results reveal that the proposed PDNO outperforms the existing neural operator approaches in most experiments.

北京阿比特科技有限公司