An independent set of a graph $G$ is a vertex subset $I$ such that there is no edge joining any two vertices in $I$. Imagine that a token is placed on each vertex of an independent set of $G$. The $\mathsf{TS}$- ($\mathsf{TS}_k$-) reconfiguration graph of $G$ takes all non-empty independent sets (of size $k$) as its nodes, where $k$ is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph $G$: (1) Whether the $\mathsf{TS}_k$-reconfiguration graph of $G$ belongs to some graph class $\mathcal{G}$ (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If $G$ satisfies some property $\mathcal{P}$ (including $s$-partitedness, planarity, Eulerianity, girth, and the clique's size), whether the corresponding $\mathsf{TS}$- ($\mathsf{TS}_k$-) reconfiguration graph of $G$ also satisfies $\mathcal{P}$, and vice versa. Additionally, we give a decomposition result for splitting a $\mathsf{TS}_k$-reconfiguration graph into smaller pieces.
We present stack graphs, an extension of Visser et al.'s scope graphs framework. Stack graphs power Precise Code Navigation at GitHub, allowing users to navigate name binding references both within and across repositories. Like scope graphs, stack graphs encode the name binding information about a program in a graph structure, in which paths represent valid name bindings. Resolving a reference to its definition is then implemented with a simple path-finding search. GitHub hosts millions of repositories, containing petabytes of total code, implemented in hundreds of different programming languages, and receiving thousands of pushes per minute. To support this scale, we ensure that the graph construction and path-finding judgments are file-incremental: for each source file, we create an isolated subgraph without any knowledge of, or visibility into, any other file in the program. This lets us eliminate the storage and compute costs of reanalyzing file versions that we have already seen. Since most commits change a small fraction of the files in a repository, this greatly amortizes the operational costs of indexing large, frequently changed repositories over time. To handle type-directed name lookups (which require "pausing" the current lookup to resolve another name), our name resolution algorithm maintains a stack of the currently paused (but still pending) lookups. Stack graphs can be constructed via a purely syntactic analysis of the program's source code, using a new declarative graph construction language. This means that we can extract name binding information for every repository without any per-package configuration, and without having to invoke an arbitrary, untrusted, package-specific build process.
In Causal Discovery with latent variables, We define two data paradigms: definite data: a single-skeleton structure with observed nodes single-value, and indefinite data: a set of multi-skeleton structures with observed nodes multi-value. Multi,skeletons induce low sample utilization and multi values induce incapability of the distribution assumption, both leading that recovering causal relations from indefinite data is, as of yet, largely unexplored. We design the causal strength variational model to settle down these two problems. Specifically, we leverage the causal strength instead of independent noise as latent variable to mediate evidence lower bound. By this design ethos, The causal strength of different skeletons is regarded as a distribution and can be expressed as a single-valued causal graph matrix. Moreover, considering the latent confounders, we disentangle the causal graph G into two relatisubgraphs O and C. O contains pure relations between observed nodes, while C represents the relations from latent variables to observed nodes. We summarize the above designs as Confounding Disentanglement Causal Discovery (biCD), which is tailored to learn causal representation from indefinite data under the latent confounding. Finally, we conduct comprehensive experiments on synthetic and real-world data to demonstrate the effectiveness of our method.
Consider words of length $n$. The set of all periods of a word of length $n$ is a subset of $\{0,1,2,\ldots,n-1\}$. However, any subset of $\{0,1,2,\ldots,n-1\}$ is not necessarily a valid set of periods. In a seminal paper in 1981, Guibas and Odlyzko have proposed to encode the set of periods of a word into an $n$ long binary string, called an autocorrelation, where a one at position $i$ denotes the period $i$. They considered the question of recognizing a valid period set, and also studied the number of valid period sets for length $n$, denoted $\kappa_n$. They conjectured that $\ln(\kappa_n)$ asymptotically converges to a constant times $\ln^2(n)$. If improved lower bounds for $\ln(\kappa_n)/\ln^2(n)$ were proposed in 2001, the question of a tight upper bound has remained opened since Guibas and Odlyzko's paper. Here, we exhibit an upper bound for this fraction, which implies its convergence and closes this long standing conjecture. Moreover, we extend our result to find similar bounds for the number of correlations: a generalization of autocorrelations which encodes the overlaps between two strings.
A random algebraic graph is defined by a group ${G}$ with a "uniform" distribution over it and a connection $\sigma:{G}\longrightarrow [0,1]$ with expectation $p,$ satisfying $\sigma({g}) = \sigma({g}^{-1}).$ The random graph $\mathsf{RAG}(n,{G},p,\sigma)$ with vertex set $[n]$ is formed as follows. First, $n$ independent latent vectors ${x}_1, \ldots, {x}_n$ are sampled uniformly from ${G}.$ Then, vertices $i,j$ are connected with probability $\sigma({x}_i{x}_j^{-1}).$ This model captures random geometric graphs with latent space the unit sphere and the hypercube, certain regimes of the stochastic block model, and random subgraphs of Cayley graphs. The main question of interest to the current paper is: when is a random algebraic graph statistically and/or computationally distinguishable from $\mathsf{G}(n,p)$? Our results fall into two main categories. 1) Geometric. We focus on the case ${G} =\{\pm1\}^d$ and use Fourier-analytic tools. For hard threshold connections, we match [LMSY22b] for $p = \omega(1/n)$ and for connections that are $\frac{1}{r\sqrt{d}}$-Lipschitz we extend the results of [LR21b] when $d = \Omega(n\log n)$ to the non-monotone setting. 2) Algebraic. We provide evidence for an exponential statistical-computational gap. Consider any finite group ${G}$ and let $A\subseteq {G}$ be a set of elements formed by including each set of the form $\{{g}, {g}^{-1}\}$ independently with probability $1/2.$ Let $\Gamma_n({G},A)$ be the distribution of random graphs formed by taking a uniformly random induced subgraph of size $n$ of the Cayley graph $\Gamma({G},A).$ Then, $\Gamma_n({G}, A)$ and $\mathsf{G}(n,1/2)$ are statistically indistinguishable with high probability over $A$ if and only if $\log |{G}| \gtrsim n.$ However, low-degree polynomial tests fail to distinguish $\Gamma_n({G}, A)$ and $\mathsf{G}(n,1/2)$ with high probability over $A$ when $\log |{G}| = \log^{\Omega(1)}n.$
Given graphs $H$ and $G$, possibly with vertex-colors, a homomorphism is a function $f:V(H)\to V(G)$ that preserves colors and edges. Many interesting counting problems (e.g., subgraph and induced subgraph counts) are finite linear combinations $p(\cdot)=\sum_{H}\alpha_{H}\hom(H,\cdot)$ of homomorphism counts, and such linear combinations are known to be hard to evaluate iff they contain a large-treewidth graph $S$. The hardness can be shown in two steps: First, the problems $\hom(S,\cdot)$ for colorful (i.e., bijectively colored) large-treewidth graphs $S$ are shown to be hard. In a second step, these problems are reduced to finite linear combinations of homomorphism counts that contain the uncolored version $S^{\circ}$ of $S$. This step can be performed via inclusion-exclusion in $2^{|E(S)|}\mathrm{poly}(n,s)$ time, where $n$ is the size of the input graph and $s$ is the maximum number of vertices among all graphs in the linear combination. We show that the second step can be performed even in time $4^{\Delta(S)}\mathrm{poly}(n,s)$, where $\Delta(S)$ is the maximum degree of $S$. Our reduction is based on graph products with Cai-F\"urer-Immerman graphs, a novel technique that is likely of independent interest. For colorful graphs $S$ of constant maximum degree, this technique yields a polynomial-time reduction from $\hom(S,\cdot)$ to linear combinations of homomorphism counts involving $S^{\circ}$. Under certain conditions, it actually suffices that a supergraph $T$ of $S^{\circ}$ is contained in the target linear combination. The new reduction yields $\mathsf{\#P}$-hardness results for several counting problems that could previously be studied only under parameterized complexity assumptions. This includes the problems of counting, on input a graph from a restricted graph class and a general graph $G$, the homomorphisms or (induced) subgraph copies from $H$ in $G$.
Let a polytope $P$ be defined by a system $A x \leq b$. We consider the problem of counting the number of integer points inside $P$, assuming that $P$ is $\Delta$-modular, where the polytope $P$ is called $\Delta$-modular if all the rank sub-determinants of $A$ are bounded by $\Delta$ in the absolute value. We present a new FPT-algorithm, parameterized by $\Delta$ and by the maximal number of vertices in $P$, where the maximum is taken by all r.h.s. vectors $b$. We show that our algorithm is more efficient for $\Delta$-modular problems than the approach of A. Barvinok et al. To this end, we do not directly compute the short rational generating function for $P \cap Z^n$, which is commonly used for the considered problem. Instead, we use the dynamic programming principle to compute its particular representation in the form of exponential series that depends on a single variable. We completely do not rely to the Barvinok's unimodular sign decomposition technique. Using our new complexity bound, we consider different special cases that may be of independent interest. For example, we give FPT-algorithms for counting the integer points number in $\Delta$-modular simplices and similar polytopes that have $n + O(1)$ facets. As a special case, for any fixed $m$, we give an FPT-algorithm to count solutions of the unbounded $m$-dimensional $\Delta$-modular subset-sum problem.
Given a set of probability measures $\mathcal{P}$ representing an agent's knowledge on the elements of a sigma-algebra $\mathcal{F}$, we can compute upper and lower bounds for the probability of any event $A\in\mathcal{F}$ of interest. A procedure generating a new assessment of beliefs is said to constrict $A$ if the bounds on the probability of $A$ after the procedure are contained in those before the procedure. It is well documented that (generalized) Bayes' updating does not allow for constriction, for all $A\in\mathcal{F}$. In this work, we show that constriction can take place with and without evidence being observed, and we characterize these possibilities.
A graph is called 1-plane if it has an embedding in the plane where each edge is crossed at most once by another edge.A crossing of a 1-plane graph is called an $\times$-crossing if there are no other edges connecting the endpoints of the crossing (apart from the crossing pair of edges). In this paper, we show how to compute the vertex connectivity of a 1-plane graph $G$ without $\times$-crossings in linear time. To do so, we show that for any two vertices $u,v$ in a minimum separating set $S$, the distance between $u$ and $v$ in an auxiliary graph $\Lambda(G)$ (obtained by planarizing $G$ and then inserting into each face a new vertex adjacent to all vertices of the face) is small. It hence suffices to search for a minimum separating set in various subgraphs $\Lambda_i$ of $\Lambda(G)$ with small diameter. Since $\Lambda(G)$ is planar, the subgraphs $\Lambda_i$ have small treewidth. Each minimum separating set $S$ then gives rise to a partition of $\Lambda_i$ into three vertex sets with special properties; such a partition can be found via Courcelle's theorem in linear time.
In this paper we consider the generalized inverse iteration for computing ground states of the Gross-Pitaevskii eigenvector problem (GPE). For that we prove explicit linear convergence rates that depend on the maximum eigenvalue in magnitude of a weighted linear eigenvalue problem. Furthermore, we show that this eigenvalue can be bounded by the first spectral gap of a linearized Gross-Pitaevskii operator, recovering the same rates as for linear eigenvector problems. With this we establish the first local convergence result for the basic inverse iteration for the GPE without damping. We also show how our findings directly generalize to extended inverse iterations, such as the Gradient Flow Discrete Normalized (GFDN) proposed in [W. Bao, Q. Du, SIAM J. Sci. Comput., 25 (2004)] or the damped inverse iteration suggested in [P. Henning, D. Peterseim, SIAM J. Numer. Anal., 53 (2020)]. Our analysis also reveals why the inverse iteration for the GPE does not react favourably to spectral shifts. This empirical observation can now be explained with a blow-up of a weighting function that crucially contributes to the convergence rates. Our findings are illustrated by numerical experiments.
We study the query version of the approximate heavy hitter and quantile problems. In the former problem, the input is a parameter $\varepsilon$ and a set $P$ of $n$ points in $\mathbb{R}^d$ where each point is assigned a color from a set $C$, and we want to build a structure s.t. given any geometric range $\gamma$, we can efficiently find a list of approximate heavy hitters in $\gamma\cap P$, i.e., colors that appear at least $\varepsilon |\gamma \cap P|$ times in $\gamma \cap P$, as well as their frequencies with an additive error of $\varepsilon |\gamma \cap P|$. In the latter problem, each point is assigned a weight from a totally ordered universe and the query must output a sequence $S$ of $1+1/\varepsilon$ weights s.t. the $i$-th weight in $S$ has approximate rank $i\varepsilon|\gamma\cap P|$, meaning, rank $i\varepsilon|\gamma\cap P|$ up to an additive error of $\varepsilon|\gamma\cap P|$. Previously, optimal results were only known in 1D [WY11] but a few sub-optimal methods were available in higher dimensions [AW17, ACH+12]. We study the problems for 3D halfspace and dominance queries. We consider the real RAM model with integer registers of size $w=\Theta(\log n)$ bits. For dominance queries, we show optimal solutions for both heavy hitter and quantile problems: using linear space, we can answer both queries in time $O(\log n + 1/\varepsilon)$. Note that as the output size is $\frac{1}{\varepsilon}$, after investing the initial $O(\log n)$ searching time, our structure takes on average $O(1)$ time to find a heavy hitter or a quantile! For more general halfspace heavy hitter queries, the same optimal query time can be achieved by increasing the space by an extra $\log_w\frac{1}{\varepsilon}$ (resp. $\log\log_w\frac{1}{\varepsilon}$) factor in 3D (resp. 2D). By spending extra $\log^{O(1)}\frac{1}{\varepsilon}$ factors in time and space, we can also support quantile queries.