亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distance measurements demonstrate distinctive scalability when used for relative state estimation in large-scale multi-robot systems. Despite the attractiveness of distance measurements, multi-robot relative state estimation based on distance measurements raises a tricky optimization problem, especially in the context of large-scale systems. Motivated by this, we aim to develop specialized computational techniques that enable robust and efficient estimation when deploying distance measurements at scale. We first reveal the commonality between the estimation problem and the one that finds realization of a sensor network, from which we draw crucial lesson to inspire the proposed methods. However, solving the latter problem in large-scale (still) requires distributed optimization schemes with scalability natures, efficient computational procedures, and fast convergence rates. Towards this goal, we propose a complementary pair of distributed computational techniques with the classical block coordinate descent (BCD) algorithm as a unified backbone. In the first method, we treat Burer-Monteiro factorization as a rank-restricted heuristic for rank-constrained semidefinite programming (SDP), where a specialized BCD-type algorithm that analytically solve each block update subproblem is employed. Although this method enables robust and (extremely) fast recovery of estimates from initial guesses, it inevitably fails as the initialization becomes disorganized. We therefore propose the second method, derived from a convex formulation named anchored edge-based semidefinite programming} (ESDP), to complement it, at the expense of a certain loss of efficiency. This formulation is structurally decomposable so that BCD can be naturally employed, where each subproblem is convex and (again) solved exactly...

相關內容

Advancement in large pretrained language models has significantly improved their performance for conditional language generation tasks including summarization albeit with hallucinations. To reduce hallucinations, conventional methods proposed improving beam search or using a fact checker as a postprocessing step. In this paper, we investigate the use of the Natural Language Inference (NLI) entailment metric to detect and prevent hallucinations in summary generation. We propose an NLI-assisted beam re-ranking mechanism by computing entailment probability scores between the input context and summarization model-generated beams during saliency-enhanced greedy decoding. Moreover, a diversity metric is introduced to compare its effectiveness against vanilla beam search. Our proposed algorithm significantly outperforms vanilla beam decoding on XSum and CNN/DM datasets.

Recent work has proposed explicitly inducing language-wise modularity in multilingual LMs via sparse fine-tuning (SFT) on per-language subnetworks as a means of better guiding cross-lingual sharing. In this work, we investigate (1) the degree to which language-wise modularity naturally arises within models with no special modularity interventions, and (2) how cross-lingual sharing and interference differ between such models and those with explicit SFT-guided subnetwork modularity. To quantify language specialization and cross-lingual interaction, we use a Training Data Attribution method that estimates the degree to which a model's predictions are influenced by in-language or cross-language training examples. Our results show that language-specialized subnetworks do naturally arise, and that SFT, rather than always increasing modularity, can decrease language specialization of subnetworks in favor of more cross-lingual sharing.

Compositional generalisation (CG), in NLP and in machine learning more generally, has been assessed mostly using artificial datasets. It is important to develop benchmarks to assess CG also in real-world natural language tasks in order to understand the abilities and limitations of systems deployed in the wild. To this end, our GenBench Collaborative Benchmarking Task submission utilises the distribution-based compositionality assessment (DBCA) framework to split the Europarl translation corpus into a training and a test set in such a way that the test set requires compositional generalisation capacity. Specifically, the training and test sets have divergent distributions of dependency relations, testing NMT systems' capability of translating dependencies that they have not been trained on. This is a fully-automated procedure to create natural language compositionality benchmarks, making it simple and inexpensive to apply it further to other datasets and languages. The code and data for the experiments is available at //github.com/aalto-speech/dbca.

Dynamically scheduled high-level synthesis (HLS) enables the use of load-store queues (LSQs) which can disambiguate data hazards at circuit runtime, increasing throughput in codes with unpredictable memory accesses. However, the increased throughput comes at the price of lower clock frequency and higher resource usage compared to statically scheduled circuits without LSQs. The lower frequency often nullifies any throughput improvements over static scheduling, while the resource usage becomes prohibitively expensive with large queue sizes. This paper presents a method for achieving dynamically scheduled memory operations in HLS without significant clock period and resource usage increase. We present a novel LSQ based on shift-registers enabled by the opportunity to specialize queue sizes to a target code in HLS. We show a method to speculatively allocate addresses to our LSQ, significantly increasing pipeline parallelism in codes that could not benefit from an LSQ before. In stark contrast to traditional load value speculation, we do not require pipeline replays and have no overhead on misspeculation. On a set of benchmarks with data hazards, our approach achieves an average speedup of 11$\times$ against static HLS and 5$\times$ against dynamic HLS that uses a state of the art LSQ from previous work. Our LSQ also uses several times fewer resources, scaling to queues with hundreds of entries, and supports both on-chip and off-chip memory.

The advancement of robots, particularly those functioning in complex human-centric environments, relies on control solutions that are driven by machine learning. Understanding how learning-based controllers make decisions is crucial since robots are often safety-critical systems. This urges a formal and quantitative understanding of the explanatory factors in the interpretability of robot learning. In this paper, we aim to study interpretability of compact neural policies through the lens of disentangled representation. We leverage decision trees to obtain factors of variation [1] for disentanglement in robot learning; these encapsulate skills, behaviors, or strategies toward solving tasks. To assess how well networks uncover the underlying task dynamics, we introduce interpretability metrics that measure disentanglement of learned neural dynamics from a concentration of decisions, mutual information and modularity perspective. We showcase the effectiveness of the connection between interpretability and disentanglement consistently across extensive experimental analysis.

The current body of research on terahertz (THz) wireless communications predominantly focuses on its application for single-user backhaul/fronthaul connectivity at sub-THz frequencies. First, we develop a generalized statistical model for signal propagation at THz frequencies encompassing physical layer impairments, including random path-loss with Gamma distribution for the molecular absorption coefficient, short-term fading characterized by the $\alpha$-$\eta$-$\kappa$-$\mu$ distribution, antenna misalignment errors, and transceiver hardware impairments. Next, we propose random access protocols for a cell-free wireless network, ensuring successful transmission for multiple users with limited delay and energy loss, exploiting the combined effect of random atmospheric absorption, non-linearity of fading, hardware impairments, and antenna misalignment errors. We consider two schemes: a fixed transmission probability (FTP) scheme where the transmission probability (TP) of each user is updated at the beginning of the data transmission and an adaptive transmission probability (ATP) scheme where the TP is updated with each successful reception of the data. We analyze the performance of both protocols using delay, energy consumption, and outage probability with scaling laws for the transmission of a data frame consisting of a single packet from users at a predefined quality of service (QoS).

Early-exit neural networks (EENNs) facilitate adaptive inference by producing predictions at multiple stages of the forward pass. In safety-critical applications, these predictions are only meaningful when complemented with reliable uncertainty estimates. Yet, due to their sequential structure, an EENN's uncertainty estimates should also be consistent: labels that are deemed improbable at one exit should not reappear within the confidence interval / set of later exits. We show that standard uncertainty quantification techniques, like Bayesian methods or conformal prediction, can lead to inconsistency across exits. We address this problem by applying anytime-valid confidence sequences (AVCSs) to the exits of EENNs. By design, AVCSs maintain consistency across exits. We examine the theoretical and practical challenges of applying AVCSs to EENNs and empirically validate our approach on both regression and classification tasks.

Registering clothes from 4D scans with vertex-accurate correspondence is challenging, yet important for dynamic appearance modeling and physics parameter estimation from real-world data. However, previous methods either rely on texture information, which is not always reliable, or achieve only coarse-level alignment. In this work, we present a novel approach to enabling accurate surface registration of texture-less clothes with large deformation. Our key idea is to effectively leverage a shape prior learned from pre-captured clothing using diffusion models. We also propose a multi-stage guidance scheme based on learned functional maps, which stabilizes registration for large-scale deformation even when they vary significantly from training data. Using high-fidelity real captured clothes, our experiments show that the proposed approach based on diffusion models generalizes better than surface registration with VAE or PCA-based priors, outperforming both optimization-based and learning-based non-rigid registration methods for both interpolation and extrapolation tests.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司