亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To make progress towards multi-modal AI assistants which can guide users to achieve complex multi-step goals, we propose the task of Visual Planning for Assistance (VPA). Given a goal briefly described in natural language, e.g., "make a shelf", and a video of the user's progress so far, the aim of VPA is to obtain a plan, i.e., a sequence of actions such as "sand shelf", "paint shelf", etc., to achieve the goal. This requires assessing the user's progress from the untrimmed video, and relating it to the requirements of underlying goal, i.e., relevance of actions and ordering dependencies amongst them. Consequently, this requires handling long video history, and arbitrarily complex action dependencies. To address these challenges, we decompose VPA into video action segmentation and forecasting. We formulate the forecasting step as a multi-modal sequence modeling problem and present Visual Language Model based Planner (VLaMP), which leverages pre-trained LMs as the sequence model. We demonstrate that VLaMP performs significantly better than baselines w.r.t all metrics that evaluate the generated plan. Moreover, through extensive ablations, we also isolate the value of language pre-training, visual observations, and goal information on the performance. We will release our data, model, and code to enable future research on visual planning for assistance.

相關內容

The release of nuPlan marks a new era in vehicle motion planning research, offering the first large-scale real-world dataset and evaluation schemes requiring both precise short-term planning and long-horizon ego-forecasting. Existing systems struggle to simultaneously meet both requirements. Indeed, we find that these tasks are fundamentally misaligned and should be addressed independently. We further assess the current state of closed-loop planning in the field, revealing the limitations of learning-based methods in complex real-world scenarios and the value of simple rule-based priors such as centerline selection through lane graph search algorithms. More surprisingly, for the open-loop sub-task, we observe that the best results are achieved when using only this centerline as scene context (\ie, ignoring all information regarding the map and other agents). Combining these insights, we propose an extremely simple and efficient planner which outperforms an extensive set of competitors, winning the nuPlan planning challenge 2023.

The growth of pending legal cases in populous countries, such as India, has become a major issue. Developing effective techniques to process and understand legal documents is extremely useful in resolving this problem. In this paper, we present our systems for SemEval-2023 Task 6: understanding legal texts (Modi et al., 2023). Specifically, we first develop the Legal-BERT-HSLN model that considers the comprehensive context information in both intra- and inter-sentence levels to predict rhetorical roles (subtask A) and then train a Legal-LUKE model, which is legal-contextualized and entity-aware, to recognize legal entities (subtask B). Our evaluations demonstrate that our designed models are more accurate than baselines, e.g., with an up to 15.0% better F1 score in subtask B. We achieved notable performance in the task leaderboard, e.g., 0.834 micro F1 score, and ranked No.5 out of 27 teams in subtask A.

With their increasing size, Large language models (LLMs) are becoming increasingly good at language understanding tasks. But even with high performance on specific downstream task, LLMs fail at simple linguistic tests for negation or quantifier understanding. Previous work on testing capability of LLMs on understanding quantifiers suggest that as the size of the models increase, they get better at understanding most-type quantifiers but get increasingly worse at understanding few-type quantifiers, thus presenting a case of an inverse-scaling law. In this paper, we question the claims of inverse scaling of few-type quantifier understanding in LLMs and show that it is a result of inappropriate testing methodology. We also present alternate methods to measure quantifier comprehension in LLMs and show that as the size of the models increase, these behaviours are different from what is shown in previous research. LLMs are consistently able to understand the difference between the meaning of few-type and most-type quantifiers, but when a quantifier is added to phrase, LLMs do not always take into account the meaning of the quantifier. We in fact see an inverse scaling law for most-type quantifiers, which is contrary to human psycho-linguistic experiments and previous work, where the model's understanding of most-type quantifier gets worse as the model size increases. We do this evaluation on models ranging from 125M-175B parameters, which suggests that LLMs do not do as well as expected with quantifiers and statistical co-occurrence of words still takes precedence over word meaning.

In this paper, we present MovieFactory, a powerful framework to generate cinematic-picture (3072$\times$1280), film-style (multi-scene), and multi-modality (sounding) movies on the demand of natural languages. As the first fully automated movie generation model to the best of our knowledge, our approach empowers users to create captivating movies with smooth transitions using simple text inputs, surpassing existing methods that produce soundless videos limited to a single scene of modest quality. To facilitate this distinctive functionality, we leverage ChatGPT to expand user-provided text into detailed sequential scripts for movie generation. Then we bring scripts to life visually and acoustically through vision generation and audio retrieval. To generate videos, we extend the capabilities of a pretrained text-to-image diffusion model through a two-stage process. Firstly, we employ spatial finetuning to bridge the gap between the pretrained image model and the new video dataset. Subsequently, we introduce temporal learning to capture object motion. In terms of audio, we leverage sophisticated retrieval models to select and align audio elements that correspond to the plot and visual content of the movie. Extensive experiments demonstrate that our MovieFactory produces movies with realistic visuals, diverse scenes, and seamlessly fitting audio, offering users a novel and immersive experience. Generated samples can be found in YouTube or Bilibili (1080P).

Recently, several multi-modal models have been developed for joint image and language understanding, which have demonstrated impressive chat abilities by utilizing advanced large language models (LLMs). The process of developing such models is straightforward yet effective. It involves pre-training an adaptation module to align the semantics of the vision encoder and language model, followed by fine-tuning on the instruction-following data. However, despite the success of this pipeline in image and language understanding, its effectiveness in joint video and language understanding has not been widely explored. In this paper, we aim to develop a novel multi-modal foundation model capable of perceiving video, image, and language within a general framework. To achieve this goal, we introduce Valley: Video Assistant with Large Language model Enhanced ability. Specifically, our proposed Valley model is designed with a simple projection module that bridges video, image, and language modalities, and is further unified with a multi-lingual LLM. We also collect multi-source vision-text pairs and adopt a spatio-temporal pooling strategy to obtain a unified vision encoding of video and image input for pre-training. Furthermore, we generate multi-task instruction-following video data, including multi-shot captions, long video descriptions, action recognition, causal relationship inference, etc. To obtain the instruction-following data, we design diverse rounds of task-oriented conversations between humans and videos, facilitated by ChatGPT. Qualitative examples demonstrate that our proposed model has the potential to function as a highly effective multilingual video assistant that can make complex video understanding scenarios easy. Code, data, and models will be available at //github.com/RupertLuo/Valley.

We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.

We present Video-LLaMA, a multi-modal framework that empowers Large Language Models (LLMs) with the capability of understanding both visual and auditory content in the video. Video-LLaMA bootstraps cross-modal training from the frozen pre-trained visual & audio encoders and the frozen LLMs. Unlike previous vision-LLMs that focus on static image comprehensions such as MiniGPT-4 and LLaVA, Video-LLaMA mainly tackles two challenges in video understanding: (1) capturing the temporal changes in visual scenes, (2) integrating audio-visual signals. To counter the first challenge, we propose a Video Q-former to assemble the pre-trained image encoder into our video encoder and introduce a video-to-text generation task to learn video-language correspondence. For the second challenge, we leverage ImageBind, a universal embedding model aligning multiple modalities as the pre-trained audio encoder, and introduce an Audio Q-former on top of ImageBind to learn reasonable auditory query embeddings for the LLM module. To align the output of both visual & audio encoders with LLM's embedding space, we train Video-LLaMA on massive video/image-caption pairs as well as visual-instruction-tuning datasets of moderate amount but higher quality. We found Video-LLaMA showcases the ability to perceive and comprehend video content, generating meaningful responses that are grounded in the visual and auditory information presented in the videos. This highlights the potential of Video-LLaMA as a promising prototype for audio-visual AI assistants.

In light of the success of the pre-trained language models (PLMs), continual pre-training of generic PLMs has been the paradigm of domain adaption. In this paper, we propose QUERT, A Continual Pre-trained Language Model for QUERy Understanding in Travel Domain Search. QUERT is jointly trained on four tailored pre-training tasks to the characteristics of query in travel domain search: Geography-aware Mask Prediction, Geohash Code Prediction, User Click Behavior Learning, and Phrase and Token Order Prediction. Performance improvement of downstream tasks and ablation experiment demonstrate the effectiveness of our proposed pre-training tasks. To be specific, the average performance of downstream tasks increases by 2.02% and 30.93% in supervised and unsupervised settings, respectively. To check on the improvement of QUERT to online business, we deploy QUERT and perform A/B testing on Fliggy APP. The feedback results show that QUERT increases the Unique Click-Through Rate and Page Click-Through Rate by 0.89% and 1.03% when applying QUERT as the encoder. Our code and downstream task data will be released for future research.

Large Language models (LLMs) have shown remarkable success in assisting robot learning tasks, i.e., complex household planning. However, the performance of pretrained LLMs heavily relies on domain-specific templated text data, which may be infeasible in real-world robot learning tasks with image-based observations. Moreover, existing LLMs with text inputs lack the capability to evolve with non-expert interactions with environments. In this work, we introduce a novel learning paradigm that generates robots' executable actions in the form of text, derived solely from visual observations, using language-based summarization of these observations as the connecting bridge between both domains. Our proposed paradigm stands apart from previous works, which utilized either language instructions or a combination of language and visual data as inputs. Moreover, our method does not require oracle text summarization of the scene, eliminating the need for human involvement in the learning loop, which makes it more practical for real-world robot learning tasks. Our proposed paradigm consists of two modules: the SUM module, which interprets the environment using visual observations and produces a text summary of the scene, and the APM module, which generates executable action policies based on the natural language descriptions provided by the SUM module. We demonstrate that our proposed method can employ two fine-tuning strategies, including imitation learning and reinforcement learning approaches, to adapt to the target test tasks effectively. We conduct extensive experiments involving various SUM/APM model selections, environments, and tasks across 7 house layouts in the VirtualHome environment. Our experimental results demonstrate that our method surpasses existing baselines, confirming the effectiveness of this novel learning paradigm.

Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for long-tail or domain-specific tasks due to limited exposure to domain-specific knowledge and vocabulary. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with custom data. Moreover, data privacy is a significant concern. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge at runtime without altering the LLMs' parameters. Our PKG is based on open-source "white-box" small language models, allowing offline storage of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of long-tail and domain-specific downstream tasks requiring factual, tabular, medical, and multimodal knowledge.

北京阿比特科技有限公司