Heavy-tailed distributions naturally arise in many settings, from finance to telecommunications. While regret minimization under sub-Gaussian or bounded support rewards has been widely studied, learning on heavy-tailed distributions only gained popularity over the last decade. In the stochastic heavy-tailed bandit problem, an agent learns under the assumption that the distributions have finite moments of maximum order $1+\epsilon$ which are uniformly bounded by a constant $u$, for some $\epsilon \in (0,1]$. To the best of our knowledge, literature only provides algorithms requiring these two quantities as an input. In this paper, we study the stochastic adaptive heavy-tailed bandit, a variation of the standard setting where both $\epsilon$ and $u$ are unknown to the agent. We show that adaptivity comes at a cost, introducing two lower bounds on the regret of any adaptive algorithm, implying a higher regret w.r.t. the standard setting. Finally, we introduce a specific distributional assumption and provide Adaptive Robust UCB, a regret minimization strategy matching the known lower bound for the heavy-tailed MAB problem.
Session types provide a typing discipline for message-passing systems. However, their theory often assumes an ideal world: one in which everything is reliable and without failures. Yet this is in stark contrast with distributed systems in the real world. To address this limitation, we introduce a new asynchronous multiparty session types (MPST) theory with crash-stop failures, where processes may crash arbitrarily and cease to interact after crashing. We augment asynchronous MPST and processes with crash handling branches, and integrate crash-stop failure semantics into types and processes. Our approach requires no user-level syntax extensions for global types, and features a formalisation of global semantics, which captures complex behaviours induced by crashed/crash handling processes. Our new theory covers the entire spectrum, ranging from the ideal world of total reliability to entirely unreliable scenarios where any process may crash, using optional reliability assumptions. Under these assumptions, we demonstrate the sound and complete correspondence between global and local type semantics, which guarantee deadlock-freedom, protocol conformance, and liveness of well-typed processes by construction, even in the presence of crashes.
Modern electric VUs are equipped with a variety of increasingly potent computing, communication, and storage resources, and with this tremendous computation power in their arsenal can be used to enhance the computing power of regular cloud systems, which is termed as vehicular cloud. Unlike in the traditional cloud computing resources, these vehicular cloud resource moves around and participates in the vehicular cloud for a sporadic duration at parking places, shopping malls, etc. This introduces the dynamic nature of vehicular resource participation in the vehicular cloud. As the user-submitted task gets allocated on these vehicular units for execution and the dynamic stay nature of vehicular units, enforce the system to ensure the reliability of task execution by allocating multiple redundant vehicular units for the task. In this work, we are maximizing the profit of vehicular cloud by ensuring the reliability of task execution where user tasks come online manner with different revenue, execution, and deadline. We propose an efficient approach to solve this problem by considering (a) task classification based on the deadline and laxity of the task, (b) ordering of tasks for task admission based on the expected profit of the task, (c) classification of vehicular units based in expected residency time and reliability concerned redundant allocation of tasks of vehicular units considering this classification and (d) handing dynamic scenario of the vehicular unit leaving the cloud system by copying the maximum percentage of executed virtual machine of the task to the substitute unit. We compared our proposed profit maximization approach with the state of art approach and showed that our approach outperforms the state of art approach with an extra 10\% to 20\% profit margin.
Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs, raising concerns about potential contamination of evaluation benchmarks. This issue is especially critical for closed-source models and certain open-source models where training data transparency is lacking. In this paper we study data contamination by proposing two methods tailored for both open-source and proprietary LLMs. We first introduce a retrieval-based system to explore potential overlaps between evaluation benchmarks and pretraining corpora. We further present a novel investigation protocol named \textbf{T}estset \textbf{S}lot Guessing (\textit{TS-Guessing}), applicable to both open and proprietary models. This approach entails masking a wrong answer in a multiple-choice question and prompting the model to fill in the gap. Additionally, it involves obscuring an unlikely word in an evaluation example and asking the model to produce it. We find that certain commercial LLMs could surprisingly guess the missing option in various test sets. Specifically, in the TruthfulQA benchmark, we find that LLMs exhibit notable performance improvement when provided with additional metadata in the benchmark. Further, in the MMLU benchmark, ChatGPT and GPT-4 demonstrated an exact match rate of 52\% and 57\%, respectively, in guessing the missing options in benchmark test data. We hope these results underscore the need for more robust evaluation methodologies and benchmarks in the field.
Chain-of-Thought (CoT) prompting has boosted the multi-step reasoning capabilities of Large Language Models (LLMs) by generating a series of rationales before the final answer. We analyze the reasoning paths generated by CoT and find two issues in multi-step reasoning: (i) Generating rationales irrelevant to the question, (ii) Unable to compose subquestions or queries for generating/retrieving all the relevant information. To address them, we propose a graph-guided CoT prompting method, which guides the LLMs to reach the correct answer with graph representation/verification steps. Specifically, we first leverage LLMs to construct a "question/rationale graph" by using knowledge extraction prompting given the initial question and the rationales generated in the previous steps. Then, the graph verification step diagnoses the current rationale triplet by comparing it with the existing question/rationale graph to filter out irrelevant rationales and generate follow-up questions to obtain relevant information. Additionally, we generate CoT paths that exclude the extracted graph information to represent the context information missed from the graph extraction. Our graph-guided reasoning method shows superior performance compared to previous CoT prompting and the variants on multi-hop question answering benchmark datasets.
Decades of research indicate that emotion recognition is more effective when drawing information from multiple modalities. But what if some modalities are sometimes missing? To address this problem, we propose a novel Transformer-based architecture for recognizing valence and arousal in a time-continuous manner even with missing input modalities. We use a coupling of cross-attention and self-attention mechanisms to emphasize relationships between modalities during time and enhance the learning process on weak salient inputs. Experimental results on the Ulm-TSST dataset show that our model exhibits an improvement of the concordance correlation coefficient evaluation of 37% when predicting arousal values and 30% when predicting valence values, compared to a late-fusion baseline approach.
The notion of group invariance helps neural networks in recognizing patterns and features under geometric transformations. Indeed, it has been shown that group invariance can largely improve deep learning performances in practice, where such transformations are very common. This research studies affine invariance on continuous-domain convolutional neural networks. Despite other research considering isometric invariance or similarity invariance, we focus on the full structure of affine transforms generated by the generalized linear group $\mathrm{GL}_2(\mathbb{R})$. We introduce a new criterion to assess the similarity of two input signals under affine transformations. Then, unlike conventional methods that involve solving complex optimization problems on the Lie group $G_2$, we analyze the convolution of lifted signals and compute the corresponding integration over $G_2$. In sum, our research could eventually extend the scope of geometrical transformations that practical deep-learning pipelines can handle.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.