亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is a lack of point process models on linear networks. For an arbitrary linear network, we consider new models for a Cox process with an isotropic pair correlation function obtained in various ways by transforming an isotropic Gaussian process which is used for driving the random intensity function of the Cox process. In particular we introduce three model classes given by log Gaussian, interrupted, and permanental Cox processes on linear networks, and consider for the first time statistical procedures and applications for parametric families of such models. Moreover, we construct new simulation algorithms for Gaussian processes on linear networks and discuss whether the geodesic metric or the resistance metric should be used for the kind of Cox processes studied in this paper.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

It is critical to deploy complicated neural network models on hardware with limited resources. This paper proposes a novel model quantization method, named the Low-Cost Proxy-Based Adaptive Mixed-Precision Model Quantization (LCPAQ), which contains three key modules. The hardware-aware module is designed by considering the hardware limitations, while an adaptive mixed-precision quantization module is developed to evaluate the quantization sensitivity by using the Hessian matrix and Pareto frontier techniques. Integer linear programming is used to fine-tune the quantization across different layers. Then the low-cost proxy neural architecture search module efficiently explores the ideal quantization hyperparameters. Experiments on the ImageNet demonstrate that the proposed LCPAQ achieves comparable or superior quantization accuracy to existing mixed-precision models. Notably, LCPAQ achieves 1/200 of the search time compared with existing methods, which provides a shortcut in practical quantization use for resource-limited devices.

Purpose: To develop an image space formalism of multi-layer convolutional neural networks (CNNs) for Fourier domain interpolation in MRI reconstructions and analytically estimate noise propagation during CNN inference. Theory and Methods: Nonlinear activations in the Fourier domain (also known as k-space) using complex-valued Rectifier Linear Units are expressed as elementwise multiplication with activation masks. This operation is transformed into a convolution in the image space. After network training in k-space, this approach provides an algebraic expression for the derivative of the reconstructed image with respect to the aliased coil images, which serve as the input tensors to the network in the image space. This allows the variance in the network inference to be estimated analytically and to be used to describe noise characteristics. Monte-Carlo simulations and numerical approaches based on auto-differentiation were used for validation. The framework was tested on retrospectively undersampled invivo brain images. Results: Inferences conducted in the image domain are quasi-identical to inferences in the k-space, underlined by corresponding quantitative metrics. Noise variance maps obtained from the analytical expression correspond with those obtained via Monte-Carlo simulations, as well as via an auto-differentiation approach. The noise resilience is well characterized, as in the case of classical Parallel Imaging. Komolgorov-Smirnov tests demonstrate Gaussian distributions of voxel magnitudes in variance maps obtained via Monte-Carlo simulations. Conclusion: The quasi-equivalent image space formalism for neural networks for k-space interpolation enables fast and accurate description of the noise characteristics during CNN inference, analogous to geometry-factor maps in traditional parallel imaging methods.

The demand-supply balance of electricity systems is fundamentally linked to climate conditions. In light of this, the present study aims to model the effect of climate change on the European electricity system, specifically on its long-term reliability. A resource adequate power system -- a system where electricity supply covers demand -- is sensitive to generation capacity, demand patterns, and the network structure and capacity. Climate change is foreseen to affect each of these components. In this analysis, we focused on two drivers of power system adequacy: the impact of temperature variations on electricity demand, and of water inflows changes on hydro generation. Using a post-processing approach, based on results found in the literature, the inputs of a large-scale electricity market model covering the European region were modified. The results show that climate change may decrease total LOLE (Loss of Load Expectation) hours in Europe by more than 50%, as demand will largely decrease because of a higher temperatures during winter. We found that the climate change impact on demand tends to decrease LOLE values, while the climate change effects on hydrological conditions tend to increase LOLE values. The study is built on a limited amount of open-source data and can flexibly incorporate various sets of assumptions. Outcomes also show the current difficulties to reliably model the effects of climate change on power system adequacy. Overall, our presented method displays the relevance of climate change effects in electricity network studies.

There is an immediate need for creative ways to improve resource ef iciency given the dynamic nature of robust sensor networks and their increasing reliance on data-driven approaches.One key challenge faced is ef iciently managing large data files collected from sensor networks for example optimal beehive image and video data files. We of er a revolutionary paradigm that uses cutting-edge edge computing techniques to optimize data transmission and storage in order to meet this problem. Our approach encompasses data compression for images and videos, coupled with a data aggregation technique for numerical data. Specifically, we propose a novel compression algorithm that performs better than the traditional Bzip2, in terms of data compression ratio and throughput. We also designed as an addition a data aggregation algorithm that basically performs very well by reducing on the time to process the overhead of individual data packets there by reducing on the network traf ic. A key aspect of our approach is its ability to operate in resource-constrained environments, such as that typically found in a local beehive farm application from where we obtained various datasets. To achieve this, we carefully explore key parameters such as throughput, delay tolerance, compression rate, and data retransmission. This ensures that our approach can meet the unique requirements of robust network management while minimizing the impact on resources. Overall, our study presents and majorly focuses on a holistic solution for optimizing data transmission and processing across robust sensor networks for specifically local beehive image and video data files. Our approach has the potential to significantly improve the ef iciency and ef ectiveness of robust sensor network management, thereby supporting sustainable practices in various IoT applications such as in Bee Hive Data Management.

We present a neuro-symbolic (NeSy) workflow combining a symbolic-based learning technique with a large language model (LLM) agent to generate synthetic data for code comment classification in the C programming language. We also show how generating controlled synthetic data using this workflow fixes some of the notable weaknesses of LLM-based generation and increases the performance of classical machine learning models on the code comment classification task. Our best model, a Neural Network, achieves a Macro-F1 score of 91.412% with an increase of 1.033% after data augmentation.

Operator-based neural network architectures such as DeepONets have emerged as a promising tool for the surrogate modeling of physical systems. In general, towards operator surrogate modeling, the training data is generated by solving the PDEs using techniques such as Finite Element Method (FEM). The computationally intensive nature of data generation is one of the biggest bottleneck in deploying these surrogate models for practical applications. In this study, we propose a novel methodology to alleviate the computational burden associated with training data generation for DeepONets. Unlike existing literature, the proposed framework for data generation does not use any partial differential equation integration strategy, thereby significantly reducing the computational cost associated with generating training dataset for DeepONet. In the proposed strategy, first, the output field is generated randomly, satisfying the boundary conditions using Gaussian Process Regression (GPR). From the output field, the input source field can be calculated easily using finite difference techniques. The proposed methodology can be extended to other operator learning methods, making the approach widely applicable. To validate the proposed approach, we employ the heat equations as the model problem and develop the surrogate model for numerous boundary value problems.

Acoustic beamforming aims to focus acoustic signals to a specific direction and suppress undesirable interferences from other directions. Despite its flexibility and steerability, beamforming with circular microphone arrays suffers from significant performance degradation at frequencies corresponding to zeros of the Bessel functions. To conquer this constraint, baffled or concentric circular microphone arrays have been studied; however, the former needs a bulky baffle that interferes with the original sound field whereas the latter requires more microphones that increase the complexity and cost, both of which are undesirable in practical applications. To tackle this challenge, this paper proposes a circular microphone array equipped with virtual microphones, which resolves the performance degradation commonly associated with circular microphone arrays without resorting to physical modifications. The sound pressures at the virtual microphones are predicted from those measured by the physical microphones based on an acoustics-informed neural network, and then the sound pressures measured by the physical microphones and those predicted at the virtual microphones are integrated to design the beamformer. Experimental results demonstrate that the proposed approach not only eliminates the performance degradation but also suppresses spatial aliasing at high frequencies, thereby underscoring its promising potential.

This paper studies a consensus problem in multidimensional networks having the same agent-to-agent interaction pattern under both intra- and cross-layer time delays. Several conditions for the agents to globally asymptotically achieve a consensus are derived, which involve the overall network's structure, the local interacting pattern, and the values of the time delays. The validity of these conditions is proved by direct eigenvalue evaluation and supported by numerical simulations.

To achieve near-zero training error in a classification problem, the layers of a feed-forward network have to disentangle the manifolds of data points with different labels, to facilitate the discrimination. However, excessive class separation can bring to overfitting since good generalisation requires learning invariant features, which involve some level of entanglement. We report on numerical experiments showing how the optimisation dynamics finds representations that balance these opposing tendencies with a non-monotonic trend. After a fast segregation phase, a slower rearrangement (conserved across data sets and architectures) increases the class entanglement.The training error at the inversion is stable under subsampling, and across network initialisations and optimisers, which characterises it as a property solely of the data structure and (very weakly) of the architecture. The inversion is the manifestation of tradeoffs elicited by well-defined and maximally stable elements of the training set, coined ``stragglers'', particularly influential for generalisation.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司