Over the past two decades, recommendation systems (RSs) have used machine learning (ML) solutions to recommend items, e.g., movies, books, and restaurants, to clients of a business or an online platform. Recipe recommendation, however, has not yet received much attention compared to those applications. We introduce RECipe as a multi-purpose recipe recommendation framework with a multi-modal knowledge graph (MMKG) backbone. The motivation behind RECipe is to go beyond (deep) neural collaborative filtering (NCF) by recommending recipes to users when they query in natural language or by providing an image. RECipe consists of 3 subsystems: (1) behavior-based recommender, (2) review-based recommender, and (3) image-based recommender. Each subsystem relies on the embedding representations of entities and relations in the graph. We first obtain (pre-trained) embedding representations of textual entities, such as reviews or ingredients, from a fine-tuned model of Microsoft's MPNet. We initialize the weights of the entities with these embeddings to train our knowledge graph embedding (KGE) model. For the visual component, i.e., recipe images, we develop a KGE-Guided variational autoencoder (KG-VAE) to learn the distribution of images and their latent representations. Once KGE and KG-VAE models are fully trained, we use them as a multi-purpose recommendation framework. For benchmarking, we created two knowledge graphs (KGs) from public datasets on Kaggle for recipe recommendation. Our experiments show that the KGE models have comparable performance to the neural solutions. We also present pre-trained NLP embeddings to address important applications such as zero-shot inference for new users (or the cold start problem) and conditional recommendation with respect to recipe categories. We eventually demonstrate the application of RECipe in a multi-purpose recommendation setting.
While reinforcement learning (RL) shows remarkable success in decision-making problems, it often requires a lot of interactions with the environment, and in sparse-reward environments, it is challenging to learn meaningful policies. Large Language Models (LLMs) can potentially provide valuable guidance to agents in learning policies, thereby enhancing the performance of RL algorithms in such environments. However, LLMs often encounter difficulties in understanding downstream tasks, which hinders their ability to optimally assist agents in these tasks. A common approach to mitigating this issue is to fine-tune the LLMs with task-related data, enabling them to offer useful guidance for RL agents. However, this approach encounters several difficulties, such as inaccessible model weights or the need for significant computational resources, making it impractical. In this work, we introduce RLAdapter, a framework that builds a better connection between RL algorithms and LLMs by incorporating an adapter model. Within the RLAdapter framework, fine-tuning a lightweight language model with information generated during the training process of RL agents significantly aids LLMs in adapting to downstream tasks, thereby providing better guidance for RL agents. We conducted experiments to evaluate RLAdapter in the Crafter environment, and the results show that RLAdapter surpasses the SOTA baselines. Furthermore, agents under our framework exhibit common-sense behaviors that are absent in baseline models.
Machine learning has been successfully applied to grid-based PDE modeling in various scientific applications. However, learned PDE solvers based on Lagrangian particle discretizations, which are the preferred approach to problems with free surfaces or complex physics, remain largely unexplored. We present LagrangeBench, the first benchmarking suite for Lagrangian particle problems, focusing on temporal coarse-graining. In particular, our contribution is: (a) seven new fluid mechanics datasets (four in 2D and three in 3D) generated with the Smoothed Particle Hydrodynamics (SPH) method including the Taylor-Green vortex, lid-driven cavity, reverse Poiseuille flow, and dam break, each of which includes different physics like solid wall interactions or free surface, (b) efficient JAX-based API with various recent training strategies and neighbors search routine, and (c) JAX implementation of established Graph Neural Networks (GNNs) like GNS and SEGNN with baseline results. Finally, to measure the performance of learned surrogates we go beyond established position errors and introduce physical metrics like kinetic energy MSE and Sinkhorn distance for the particle distribution. Our codebase is available under the URL: //github.com/tumaer/lagrangebench
Query-based object detectors have made significant advancements since the publication of DETR. However, most existing methods still rely on multi-stage encoders and decoders, or a combination of both. Despite achieving high accuracy, the multi-stage paradigm (typically consisting of 6 stages) suffers from issues such as heavy computational burden, prompting us to reconsider its necessity. In this paper, we explore multiple techniques to enhance query-based detectors and, based on these findings, propose a novel model called GOLO (Global Once and Local Once), which follows a two-stage decoding paradigm. Compared to other mainstream query-based models with multi-stage decoders, our model employs fewer decoder stages while still achieving considerable performance. Experimental results on the COCO dataset demonstrate the effectiveness of our approach.
With the development of deep learning technology, various forgery methods emerge endlessly. Meanwhile, methods to detect these fake videos have also achieved excellent performance on some datasets. However, these methods suffer from poor generalization to unknown videos and are inefficient for new forgery methods. To address this challenging problem, we propose UVL, a novel unified video tampering localization framework for synthesizing forgeries. Specifically, UVL extracts common features of synthetic forgeries: boundary artifacts of synthetic edges, unnatural distribution of generated pixels, and noncorrelation between the forgery region and the original. These features are widely present in different types of synthetic forgeries and help improve generalization for detecting unknown videos. Extensive experiments on three types of synthetic forgery: video inpainting, video splicing and DeepFake show that the proposed UVL achieves state-of-the-art performance on various benchmarks and outperforms existing methods by a large margin on cross-dataset.
A flurry of recent work has demonstrated that pre-trained large language models (LLMs) can be effective task planners for a variety of single-robot tasks. The planning performance of LLMs is significantly improved via prompting techniques, such as in-context learning or re-prompting with state feedback, placing new importance on the token budget for the context window. An under-explored but natural next direction is to investigate LLMs as multi-robot task planners. However, long-horizon, heterogeneous multi-robot planning introduces new challenges of coordination while also pushing up against the limits of context window length. It is therefore critical to find token-efficient LLM planning frameworks that are also able to reason about the complexities of multi-robot coordination. In this work, we compare the task success rate and token efficiency of four multi-agent communication frameworks (centralized, decentralized, and two hybrid) as applied to four coordination-dependent multi-agent 2D task scenarios for increasing numbers of agents. We find that a hybrid framework achieves better task success rates across all four tasks and scales better to more agents. We further demonstrate the hybrid frameworks in 3D simulations where the vision-to-text problem and dynamical errors are considered. See our project website //yongchao98.github.io/MIT-REALM-Multi-Robot/ for prompts, videos, and code.
We present a new algorithm based on posterior sampling for learning in constrained Markov decision processes (CMDP) in the infinite-horizon undiscounted setting. The algorithm achieves near-optimal regret bounds while being advantageous empirically compared to the existing algorithms. Our main theoretical result is a Bayesian regret bound for each cost component of \tilde{O} (HS \sqrt{AT}) for any communicating CMDP with S states, A actions, and bound on the hitting time H. This regret bound matches the lower bound in order of time horizon T and is the best-known regret bound for communicating CMDPs in the infinite-horizon undiscounted setting. Empirical results show that, despite its simplicity, our posterior sampling algorithm outperforms the existing algorithms for constrained reinforcement learning.
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.
In recent years, a specific machine learning method called deep learning has gained huge attraction, as it has obtained astonishing results in broad applications such as pattern recognition, speech recognition, computer vision, and natural language processing. Recent research has also been shown that deep learning techniques can be combined with reinforcement learning methods to learn useful representations for the problems with high dimensional raw data input. This chapter reviews the recent advances in deep reinforcement learning with a focus on the most used deep architectures such as autoencoders, convolutional neural networks and recurrent neural networks which have successfully been come together with the reinforcement learning framework.
Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.